• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Qualitative model-based multi-sensor data fusion : the qualitative Kalman filter

Reece, Steven January 1998 (has links)
No description available.
2

Design of Control Algorithms for Automation of a Full Dimension Continuouis Haulage System

Varadhan, Aishwarya 25 April 2000 (has links)
The main theme of this research will be to develop solutions to the widely known 3-part question in mobile robotics comprising of "Where am I" "Where should I be" and "How do I get there". This can be achieved by implementing automation algorithms. Automation algorithms or control algorithms are vital components of any autonomous vehicle. Design and development of both prototype and full-scale control algorithms for a Long-Airdox Full Dimension Continuous Haulage system will be the main focus. Automation is a highly complex task, which aims at achieving increased levels of equipment efficiency by eliminating errors that arise due to human interference. Achieving a fully autonomous operation of a machine involves a variety of high-level interlaced functions that work in harmony, and at the same time perform functions that mimic the human operator. Automation has expanded widely in the field of mobile robotics, thus leading to the development of autonomous robots, automated guided vehicles and other autonomous vehicles. An indispensable element of an autonomous vehicle is a navigation system that steers it to a required destination. The vehicle must be able to determine its relationship to the environment by sensing, and also must be able to decide what actions are required to achieve its goal(s) in the working environment. The goal of this research is to demonstrate a fully autonomous operation of the Continuous Haulage System, and to establish its potential advantages. / Master of Science
3

Standalone and embedded stereo visual odometry based navigation solution

Chermak, Lounis January 2015 (has links)
This thesis investigates techniques and designs an autonomous visual stereo based navigation sensor to improve stereo visual odometry for purpose of navigation in unknown environments. In particular, autonomous navigation in a space mission context which imposes challenging constraints on algorithm development and hardware requirements. For instance, Global Positioning System (GPS) is not available in this context. Thus, a solution for navigation cannot rely on similar external sources of information. Support to handle this problem is required with the conception of an intelligent perception-sensing device that provides precise outputs related to absolute and relative 6 degrees of freedom (DOF) positioning. This is achieved using only images from stereo calibrated cameras possibly coupled with an inertial measurement unit (IMU) while fulfilling real time processing requirements. Moreover, no prior knowledge about the environment is assumed. Robotic navigation has been the motivating research to investigate different and complementary areas such as stereovision, visual motion estimation, optimisation and data fusion. Several contributions have been made in these areas. Firstly, an efficient feature detection, stereo matching and feature tracking strategy based on Kanade-Lucas-Tomasi (KLT) feature tracker is proposed to form the base of the visual motion estimation. Secondly, in order to cope with extreme illumination changes, High dynamic range (HDR) imaging solution is investigated and a comparative assessment of feature tracking performance is conducted. Thirdly, a two views local bundle adjustment scheme based on trust region minimisation is proposed for precise visual motion estimation. Fourthly, a novel KLT feature tracker using IMU information is integrated into the visual odometry pipeline. Finally, a smart standalone stereo visual/IMU navigation sensor has been designed integrating an innovative combination of hardware as well as the novel software solutions proposed above. As a result of a balanced combination of hardware and software implementation, we achieved 5fps frame rate processing up to 750 initials features at a resolution of 1280x960. This is the highest reached resolution in real time for visual odometry applications to our knowledge. In addition visual odometry accuracy of our algorithm achieves the state of the art with less than 1% relative error in the estimated trajectories.
4

Standalone and embedded stereo visual odometry based navigation solution

Chermak, L 17 July 2015 (has links)
This thesis investigates techniques and designs an autonomous visual stereo based navigation sensor to improve stereo visual odometry for purpose of navigation in unknown environments. In particular, autonomous navigation in a space mission context which imposes challenging constraints on algorithm development and hardware requirements. For instance, Global Positioning System (GPS) is not available in this context. Thus, a solution for navigation cannot rely on similar external sources of information. Support to handle this problem is required with the conception of an intelligent perception-sensing device that provides precise outputs related to absolute and relative 6 degrees of freedom (DOF) positioning. This is achieved using only images from stereo calibrated cameras possibly coupled with an inertial measurement unit (IMU) while fulfilling real time processing requirements. Moreover, no prior knowledge about the environment is assumed. Robotic navigation has been the motivating research to investigate different and complementary areas such as stereovision, visual motion estimation, optimisation and data fusion. Several contributions have been made in these areas. Firstly, an efficient feature detection, stereo matching and feature tracking strategy based on Kanade-Lucas-Tomasi (KLT) feature tracker is proposed to form the base of the visual motion estimation. Secondly, in order to cope with extreme illumination changes, High dynamic range (HDR) imaging solution is investigated and a comparative assessment of feature tracking performance is conducted. Thirdly, a two views local bundle adjustment scheme based on trust region minimisation is proposed for precise visual motion estimation. Fourthly, a novel KLT feature tracker using IMU information is integrated into the visual odometry pipeline. Finally, a smart standalone stereo visual/IMU navigation sensor has been designed integrating an innovative combination of hardware as well as the novel software solutions proposed above. As a result of a balanced combination of hardware and software implementation, we achieved 5fps frame rate processing up to 750 initials features at a resolution of 1280x960. This is the highest reached resolution in real time for visual odometry applications to our knowledge. In addition visual odometry accuracy of our algorithm achieves the state of the art with less than 1% relative error in the estimated trajectories. / © Cranfield University, 2014

Page generated in 0.1341 seconds