• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 871
  • 139
  • 138
  • 81
  • 38
  • 17
  • 16
  • 13
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 1570
  • 1570
  • 1199
  • 344
  • 321
  • 270
  • 244
  • 187
  • 182
  • 165
  • 153
  • 137
  • 134
  • 131
  • 125
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Energy-Aware Topology Control and Data Delivery in Wireless Sensor Networks

Park, Seung-Jong 12 July 2004 (has links)
The objective of this thesis is to address the problem of energy conservation in wireless sensor networks by tackling two fundamental problems: topology control and data delivery. We first address energy-aware topology control taking into account throughput per unit energy as the primary metric of interest. Through both experimental observations and analysis, we show that the optimal topology is a function of traffic load in the network. We then propose a new topology control scheme, Adaptive Topology Control (ATC), which increases throughput per unit energy. Based on different coordinations among nodes, we proposed three ATC schemes: ATC-CP, ATC-IP, and ATC-MS. Through simulations, we show that three ATC schemes outperform static topology control schemes, and particularly the ATC-MS has the best performance under all environments. Secondly, we explore an energy-aware data delivery problem consisting of two sub-problems: downstream (from a sink to sensors) and upstream (from sensors to a sink) data delivery. Although we address the problems as two independent ones, we eventually solve those problems with two approaches: GARUDA-DN and GARUDA-UP which share a common structure, the minimum dominating set. For the downstream data delivery, we consider reliability as well as energy conservation since unreliable data delivery can increase energy consumption under high data loss rates. To reduce energy consumption and achieve robustness, we propose GARUDA-DN which is scalable to the network size, message characteristics, loss rate and the reliable delivery semantics. From ns2-based simulations, we show that GARUDA-DN performs significantly better than the basic schemes proposed thus far in terms of latency and energy consumption. For the upstream data delivery, we address an energy efficient aggregation scheme to gather correlated data with theoretical solutions: the shortest path tree (SPT), the minimum spanning tree (MST) and the Steiner minimum tree (SMT). To approximate the optimal solution in case of perfect correlation among data, we propose GARUDA-UP which combines the minimum dominating set (MDS) with SPT in order to aggregate correlated data. From discrete event simulations, we show that GARUDA-UP outperforms the SPT and closely approximates the centralized optimal solution, SMT, with less amount of overhead and in a decentralized fashion.
302

Algorithms for Self-Organizing Wireless Sensor Networks

Ould-Ahmed-Vall, ElMoustapha 09 April 2007 (has links)
The unique characteristics of sensor networks pose numerous challenges that have to be overcome to enable their efficient use. In particular, sensor networks are energy constrained because of their reliance on battery power. They can be composed of a large number of unreliable nodes. These characteristics render node collaboration essential to the accomplishment of the network task and justify the development of new algorithms to provide services such as routing, fault tolerance and naming. This work increases the knowledge on the growing field of sensor network algorithms by contributing a new evaluation tool and two new algorithms. A new sensor network simulator that can be used to evaluate sensor network algorithms is discussed. It incorporates models for the different functional units composing a sensor node and characterizes the energy consumption of each. It is designed in a modular and efficient way favoring the ease of use and extension. It allows the user to choose from different implementations of energy models, accuracy models and types of sensors. The second contribution of this thesis is a distributed algorithm to solve the unique ID assignment problem in sensor networks. Our solution starts by assigning long unique IDs and organizing nodes in a tree structure. This tree structure is used to compute the size of the network. Then, unique IDs are assigned using the minimum length. Globally unique IDs are useful in providing many network functions, e.g. node maintenance and security. Theoretical and simulation analysis of the ID assignment algorithm demonstrate that a high percentage of nodes are assigned unique IDs at the termination of the algorithm when the algorithm parameters are set properly. Furthermore, the algorithm terminates in a short time that scales well with the network size. The third contribution of this thesis is a general fault-tolerant event detection scheme that allows nodes to detect erroneous local decisions based on the local decisions reported by their neighbors. It can handle cases where nodes have different and dynamic accuracy levels. We prove analytically that the derived fault-tolerant estimator is optimal under the maximum a posteriori criterion. An equivalent weighted voting scheme is derived.
303

Efficient Communication Protocols for Underwater Acoustic Sensor Networks

Pompili, Dario 14 June 2007 (has links)
Underwater sensor networks find applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation, tactical surveillance, and mine reconnaissance. The enabling technology for these applications is acoustic wireless networking. UnderWater Acoustic Sensor Networks (UW-ASNs) consist of sensors and Autonomous Underwater Vehicles (AUVs) deployed to perform collaborative monitoring tasks. The objective of this research is to explore fundamental key aspects of underwater acoustic communications, propose communication architectures for UW-ASNs, and develop efficient sensor communication protocols tailored for the underwater environment. Specifically, different deployment strategies for UW-ASNs are studied, and statistical deployment analysis for different architectures is provided. Moreover, a model characterizing the underwater acoustic channel utilization efficiency is introduced. The model allows setting the optimal packet size for underwater communications. Two distributed routing algorithms are proposed for delay-insensitive and delay-sensitive applications. The proposed routing solutions allow each node to select its next hop, with the objective of minimizing the energy consumption taking the different application requirements into account. In addition, a resilient routing solution to guarantee survivability of the network to node and link failures in long-term monitoring missions is developed. Moreover, a distributed Medium Access Control (MAC) protocol for UW-ASNs is proposed. It is a transmitter-based code division multiple access scheme that incorporates a novel closed-loop distributed algorithm to set the optimal transmit power and code length. It aims at achieving high network throughput, low channel access delay, and low energy consumption. Finally, an efficient cross-layer communication solution tailored for multimedia traffic (i.e., video and audio streams, still images, and scalar sensor data) is introduced.
304

Health monitoring of drive connected three-phase induction motors from wired towards wireless sensor networks /

Xue, Xin. January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 20, 2010). Includes bibliographical references. Also issued in print.
305

Improving system performance for wireless networks

Shen, Fangyang, Sun, Min-Te, January 2008 (has links)
Thesis (Ph. D.)--Auburn University. / Abstract. Vita. Includes bibliographical references (p. 54-63).
306

Investigation of routing protocols in a sensor network

Praveenkumar, Ramesh. January 2006 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2006. / Description based on contents viewed Jan. 29, 2007; title from title screen. Includes bibliographical references (p. 89-90).
307

PROVIDING MULTI-PERSPECTIVE COVERAGE IN WIRELESS MULTIMEDIA SENSOR NETWORKS

Yildiz, Enes 01 August 2011 (has links)
Deployment of cameras in Wireless Multimedia Sensor Networks (WMSNs) is crucial in achieving good coverage, accuracy and fault tolerance. With the decreased costs of wireless cameras, WMSNs provide opportunities for redundant camera deployment in order to get multiple disparate views of events. Referred to as multi-perspective coverage (MPC), this thesis proposes an optimal solution for camera deployment that can achieve full MPC for a given region. The solution is based on a Bi-Level mixed integer program (MIP) which works by solving two sub-problems named master and sub-problems. The master problem identifies a solution based on an initial set of points and then calls the sub-problem to cover the uncovered points iteratively. The Bi-Level algorithm is then revised to provide MPC with the minimum cost in Heteregeneous Visual Sensor Networks (VSNs) where cameras may have different price, resolution, Field-of-View (FoV) and Depth-of-Field (DoF). For a given average resolution, area, and variety of camera sensors, we propose a deployment algorithm which minimizes the total cost while guaranteeing 100\% MPC of the area and a minimum resolution. Furthermore, revised Bi-level algorithm provides the flexibility of achieving required resolution on sub-regions for a given region. The numerical results show the superiority of our approach with respect to existing approaches.
308

Development of plough-able RFID sensor network systems for precision agriculture

Wang, Chuan January 2016 (has links)
There is a growing interest in employing sub-soil sensing systems to support precision agriculture. This thesis presents the design of an RFID sub-soil sensing system which is based on integrating passive RFID technology and sub-soil sensing technology. The proposed RFID sub-soil system comprises of an above-ground RFID reader and a number of RFID sub-soil sensor nodes. The key feature of the system is that the sensor nodes do not require an on-board battery, as they are capable of harvesting energy from the ElectroMagnetic (EM) field generated by the RFID reader. The sensor nodes then transmit sensor measurements to the reader wirelessly through soil. With the proposed RFID sub-soil system, the high path loss of the sub-soil wireless channel is a significant problem which leads to the challenge for the system to achieve an acceptable Quality of Service (QoS). In this project, the path loss in soil has been characterised through CST simulations. In the simulations, the effect of the soil on the sensor node antenna has also been investigated. This thesis also presents the design and implementation of a programmable RFID reader platform and an embedded RFID sensor node prototype. The RFID reader platform is implemented using a National Instruments (NI) PXI system, and it is configured and controlled by NI LabVIEW software. The sensor node prototype is capable of harvesting RF energy and transmitting sensor measurements from a temperature sensor through backscatter communication. A series of sub-soil experiments have been carried out to evaluate the performance of the RFID sensor node prototype using the PXI-based RFID reader platform. The experimental results are presented and analysed in this thesis. Additionally, this work has explored trade-offs in the system design, and these design trade-offs are summarised and described.
309

Non-Uniform Grid-Based Coordinated Routing in Wireless Sensor Networks

Kadiyala, Priyanka 08 1900 (has links)
Wireless sensor networks are ad hoc networks of tiny battery powered sensor nodes that can organize themselves to form self-organized networks and collect information regarding temperature, light, and pressure in an area. Though the applications of sensor networks are very promising, sensor nodes are limited in their capability due to many factors. The main limitation of these battery powered nodes is energy. Sensor networks are expected to work for long periods of time once deployed and it becomes important to conserve the battery life of the nodes to extend network lifetime. This work examines non-uniform grid-based routing protocol as an effort to minimize energy consumption in the network and extend network lifetime. The entire test area is divided into non-uniformly shaped grids. Fixed source and sink nodes with unlimited energy are placed in the network. Sensor nodes with full battery life are deployed uniformly and randomly in the field. The source node floods the network with only the coordinator node active in each grid and the other nodes sleeping. The sink node traces the same route back to the source node through the same coordinators. This process continues till a coordinator node runs out of energy, when new coordinator nodes are elected to participate in routing. Thus the network stays alive till the link between the source and sink nodes is lost, i.e., the network is partitioned. This work explores the efficiency of the non-uniform grid-based routing protocol for different node densities and the non-uniform grid structure that best extends network lifetime.
310

The Effect of Mobility on Wireless Sensor Networks

Hasir, Ibrahim 08 1900 (has links)
Wireless sensor networks (WSNs) have gained attention in recent years with the proliferation of the micro-electro-mechanical systems, which has led to the development of smart sensors. Smart sensors has brought WSNs under the spotlight and has created numerous different areas of research such as; energy consumption, convergence, network structures, deployment methods, time delay, and communication protocols. Convergence rates associated with information propagations of the networks will be questioned in this thesis. Mobility is an expensive process in terms of the associated energy costs. In a sensor network, mobility has significant overhead in terms of closing old connections and creating new connections as mobile sensor nodes move from one location to another. Despite these drawbacks, mobility helps a sensor network reach an agreement more quickly. Adding few mobile nodes to an otherwise static network will significantly improve the network’s ability to reach consensus. This paper shows the effect of the mobility on convergence rate of the wireless sensor networks, through Eigenvalue analysis, modeling and simulation.

Page generated in 0.0446 seconds