Spelling suggestions: "subject:"censores inerciais"" "subject:"censores enerciais""
21 |
Estudo de erros na identificação da dinâmica dos sensores inerciaisVanderlei Neias Junior 13 May 2011 (has links)
Esta dissertação descreve estudo sobre quantificação de erros na identificação de sistemas advindos de uma baixa freqüência de amostragem e um sinal de excitação ruim, que não consiga excitar o sistema com a largura de banda desejada. Esses erros comprometem a precisão de uma boa identificação, ainda mais quando se trata da dinâmica dos sensores inerciais. Para conhecer as características desses sensores são usados simuladores de movimento, que na situação tinha a banda passante menor que a do sensor sob teste, ou seja, não se conseguia excitar toda a freqüência de largura de banda sensor. Diante desse erro, este trabalho teve seu estudo em identificação de sistema usando modelos como: ARX, ARMAX, BJ, OE e INVFREQ, no sentido de quantificar os erros nos resultados obtidos através de ensaios, utilizando duas funções de transferência muito próxima das funções reais utilizadas.
|
22 |
Navegação terrestre usando unidade de medição inercial de baixo desempenho e fusão sensorial com filtro de Kalman adaptativo suavizado. / Terrestrial navigation using low-grade inertial measurement unit and sensor fusion with smoothed adaptive Kalman filter.Douglas Daniel Sampaio Santana 01 June 2011 (has links)
Apresenta-se o desenvolvimento de modelos matemáticos e algoritmos de fusão sensorial para navegação terrestre usando uma unidade de medição inercial (UMI) de baixo desempenho e o Filtro Estendido de Kalman. Os modelos foram desenvolvidos com base nos sistemas de navegação inercial strapdown (SNIS). O termo baixo desempenho refere-se à UMIs que por si só não são capazes de efetuar o auto- alinhamento por girocompassing. A incapacidade de se navegar utilizando apenas uma UMI de baixo desempenho motiva a investigação de técnicas que permitam aumentar o grau de precisão do SNIS com a utilização de sensores adicionais. Esta tese descreve o desenvolvimento do modelo completo de uma fusão sensorial para a navegação inercial de um veículo terrestre usando uma UMI de baixo desempenho, um hodômetro e uma bússola eletrônica. Marcas topográficas (landmarks) foram instaladas ao longo da trajetória de teste para se medir o erro da estimativa de posição nesses pontos. Apresenta-se o desenvolvimento do Filtro de Kalman Adaptativo Suavizado (FKAS), que estima conjuntamente os estados e o erro dos estados estimados do sistema de fusão sensorial. Descreve-se um critério quantitativo que emprega as incertezas de posição estimadas pelo FKAS para se determinar a priori, dado os sensores disponíveis, o intervalo de tempo máximo que se pode navegar dentro de uma margem de confiabilidade desejada. Conjuntos reduzidos de landmarks são utilizados como sensores fictícios para testar o critério de confiabilidade proposto. Destacam-se ainda os modelos matemáticos aplicados à navegação terrestre, unificados neste trabalho. Os resultados obtidos mostram que, contando somente com os sensores inerciais de baixo desempenho, a navegação terrestre torna-se inviável após algumas dezenas de segundos. Usando os mesmos sensores inerciais, a fusão sensorial produziu resultados muito superiores, permitindo reconstruir trajetórias com deslocamentos da ordem de 2,7 km (ou 15 minutos) com erro final de estimativa de posição da ordem de 3 m. / This work presents the development of the mathematical models and the algorithms of a sensor fusion system for terrestrial navigation using a low-grade inertial measurement unit (IMU) and the Extended Kalman Filter. The models were developed on the basis of the strapdown inertial navigation systems (SINS). Low-grade designates an IMU that is not able to perform girocompassing self-alignment. The impossibility of navigating relying on a low performance IMU is the motivation for investigating techniques to improve the SINS accuracy with the use of additional sensors. This thesis describes the development of a comprehensive model of a sensor fusion for the inertial navigation of a ground vehicle using a low-grade IMU, an odometer and an electronic compass. Landmarks were placed along the test trajectory in order to allow the measurement of the error of the position estimation at these points. It is presented the development of the Smoothed Adaptive Kalman Filter (SAKF), which jointly estimates the states and the errors of the estimated states of the sensor fusion system. It is presented a quantitative criteria which employs the position uncertainties estimated by SAKF in order to determine - given the available sensors, the maximum time interval that one can navigate within a desired reliability. Reduced sets of landmarks are used as fictitious sensors to test the proposed reliability criterion. Also noteworthy are the mathematical models applied to terrestrial navigation that were unified in this work. The results show that, only relying on the low performance inertial sensors, the terrestrial navigation becomes impracticable after few tens of seconds. Using the same inertial sensors, the sensor fusion produced far better results, allowing the reconstruction of trajectories with displacements of about 2.7 km (or 15 minutes) with a final error of position estimation of about 3 m.
|
23 |
[en] QUADROTORS AERIAL VEHICLES CONTROL: KALMAN FILTERS USED TO MINIMIZE ERRORS ON INERTIAL MEASUREMENT UNIT / [pt] CONTROLE DE VEÍCULOS AÉREOS QUADRIROTORES: USO DE FILTROS DE KALMAN PARA MINIMIZAÇÃO DE ERROS NA UNIDADE DE MEDIDA INERCIALMARCOS SOARES MOURA COSTA 26 November 2018 (has links)
[pt] Quadrirrotores são veículos aéreos que possuem quatro rotores fixos e orientados na direção vertical. Devido à sua simplicidade mecânica frente aos helicópteros tradicionais, os mesmos têm se tornado cada vez mais populares nos meios de pesquisa, militares e, mais recentemente, industriais. Essa topologia de veículo data do início do século XX mas o desenvolvimento em escala só foi possível após a recente evolução e miniaturização dos sistemas eletrônicos embarcados, dos motores elétricos e das baterias. A movimentação desses veículos no espaço é possível graças à sua inclinação em relação ao solo e, para tal, é imprescindível obter e controlar corretamente a atitude do mesmo. As unidades de medidas inerciais (IMU) surgiram como uma solução para esse problema. Através da fusão dos dados obtidos com os sensores presentes nessas centrais (acelerômetros, girômetros e magnetômetro) é possível estimar a atitude do veículo. O presente trabalho apresenta soluções tanto para a estimativa quanto para o controle de atitude de quadrirrotor. Os modelos matemáticos desenvolvidos são validados em simulações numéricas e em testes experimentais. O objetivo é que as soluções propostas apresentem resultados positivos para que possam ser empregadas nos quadrirrotores em escala. / [en] Quadrotors are vehicles that have four fixed rotors in the vertical direction. Due to its mechanical simplicity compared to traditional helicopters, these vehicles have become increasingly popular in the research, military and, more recently, industrial fields. This type of vehicle first appeared in the early twentieth century, but the development of small-scale models was only possible after the recent evolution and miniaturization of embedded electronics, electric motors and batteries. A Quadrotor can fly in any direction by changing its inclination relative to the ground, so it is essential to calculate and properly adjust its attitude. The inertial measurement units (IMU) emerged as one solution to this problem. By merging the IMU sensors data, it is possible to estimate the vehicle s attitude. This dissertation presents solutions for both the estimation and the control of the vehicle s attitude. The developed mathematical models are validated with numerical simulations and experimental tests. The goal is that the presented solutions give enough good results so they can be used in small-scale Quadrotors.
|
Page generated in 0.0464 seconds