• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensory Integration During Goal Directed Reaches: The Effects of Manipulating Target Availability

Khanafer, Sajida 19 October 2012 (has links)
When using visual and proprioceptive information to plan a reach, it has been proposed that the brain combines these cues to estimate the object and/or limb’s location. Specifically, according to the maximum-likelihood estimation (MLE) model, more reliable sensory inputs are assigned a greater weight (Ernst & Banks, 2002). In this research we examined if the brain is able to adjust which sensory cue it weights the most. Specifically, we asked if the brain changes how it weights sensory information when the availability of a visual cue is manipulated. Twenty-four healthy subjects reached to visual (V), proprioceptive (P), or visual + proprioceptive (VP) targets under different visual delay conditions (e.g. on V and VP trials, the visual target was available for the entire reach, it was removed with the go-signal or it was removed 1, 2 or 5 seconds before the go-signal). Subjects completed 5 blocks of trials, with 90 trials per block. For 12 subjects, the visual delay was kept consistent within a block of trials, while for the other 12 subjects, different visual delays were intermixed within a block of trials. To establish which sensory cue subjects weighted the most, we compared endpoint positions achieved on V and P reaches to VP reaches. Results indicated that all subjects weighted sensory cues in accordance with the MLE model across all delay conditions and that these weights were similar regardless of the visual delay. Moreover, while errors increased with longer visual delays, there was no change in reaching variance. Thus, manipulating the visual environment was not enough to change subjects’ weighting strategy, further i
2

Sensory Integration During Goal Directed Reaches: The Effects of Manipulating Target Availability

Khanafer, Sajida 19 October 2012 (has links)
When using visual and proprioceptive information to plan a reach, it has been proposed that the brain combines these cues to estimate the object and/or limb’s location. Specifically, according to the maximum-likelihood estimation (MLE) model, more reliable sensory inputs are assigned a greater weight (Ernst & Banks, 2002). In this research we examined if the brain is able to adjust which sensory cue it weights the most. Specifically, we asked if the brain changes how it weights sensory information when the availability of a visual cue is manipulated. Twenty-four healthy subjects reached to visual (V), proprioceptive (P), or visual + proprioceptive (VP) targets under different visual delay conditions (e.g. on V and VP trials, the visual target was available for the entire reach, it was removed with the go-signal or it was removed 1, 2 or 5 seconds before the go-signal). Subjects completed 5 blocks of trials, with 90 trials per block. For 12 subjects, the visual delay was kept consistent within a block of trials, while for the other 12 subjects, different visual delays were intermixed within a block of trials. To establish which sensory cue subjects weighted the most, we compared endpoint positions achieved on V and P reaches to VP reaches. Results indicated that all subjects weighted sensory cues in accordance with the MLE model across all delay conditions and that these weights were similar regardless of the visual delay. Moreover, while errors increased with longer visual delays, there was no change in reaching variance. Thus, manipulating the visual environment was not enough to change subjects’ weighting strategy, further i
3

Optimisation proprioceptive cutanée de cheville : quels effets comportementaux ? / Ankle cutaneous proprioceptive optimization : which behavioral effects ?

Pavailler, Sébastien 23 November 2016 (has links)
Chez l’Homme, le contrôle de tout mouvement nécessite la prise en compte d’informations sensorielles issues de différents systèmes. Une partie de ces informations constitue la proprioception, un « sixième sens » méconnu mais primordial dans le contrôle du mouvement. Ce sens permet aux personnes de déterminer les positions spatiales et les vitesses de déplacement des différents segments corporels les uns par rapport aux autres. Le système de traitement des informations proprioceptives repose sur des mécanismes nerveux complexes, et dont l’évaluation est difficile. Il est toutefois possible, à l’instar d’une acuité visuelle relative au sens de la vision par exemple de déterminer une acuité proprioceptive. Des travaux portant sur l’articulation de la cheville ont établi un lien entre acuité proprioceptive et niveau de performance dans une activité donnée. Dans ce contexte une optimisation du système proprioceptif, basé sur une stimulation de la peau présente un grand intérêt. Diverses solutions de supports externes de cheville ont ainsi été développées pour ce travail de thèse qui s’est intéressé à la possibilité d’intégration d’une « fonction proprioceptive » à une chaussure de sport destinée notamment à la course à pied et/ou au tennis. Les effets comportementaux de cette fonction dans des tâches motrices globales ont été étudiés. Ce travail a mis en évidence i) que l’application d’un support externe de cheville permettait d’augmenter la quantité de signal proprioceptif transmise au système nerveux lors d’une tâche simple d’équilibre orthostatique et ii) que ce signal n’était pris en compte que chez certains individus possédant un profil sensoriel intégrant peu les informations proprioceptives de la cheville. Enfin, il semble que les effets comportementaux de supports externes de cheville dans des tâches plus complexes soient en revanche très limités. / In humans, every single movement needs regulation based on sensory information arising from different systems. A part of this sensory information forms the sense of proprioception, a little known “sixth sense” that is yet essential in movement regulation. This sense allows people to know the position and speed of their body segments relative to each other. The central processing of proprioceptive information is complex, and its assessment is difficult. It is yes possible to determine a proprioceptive acuity, in the manner of a visual acuity related to the sense of vision. Studies on the ankle joint evidenced that the proprioceptive acuity correlates to the performance level in a given activity. In this context, optimizing the proprioceptive system by stimulating the skin would be of great interest. Various external ankle supports solutions were developed for this thesis that interested in the possibility to implement a “proprioceptive function” in a sport shoe, especially intended for running and/or playing tennis. Behavioral effects of this function in global motor tasks were specifically studied. This thesis showed that (i) wearing an external ankle support increase the amount of proprioceptive signal conveyed to the central nervous system in a simple upright standing task and (ii) that this signal is effectively used only in individuals with a preferred sensory strategy that do not use much of the ankle proprioceptive information. Eventually, the behavioral effects of such external ankle supports in more complex tasks are very limited.
4

Modulation du traitement cortical des informations visuelles et somatosensorielles en situation d'incongruence : une approche électroencéphalographique / Modulation of cortical visual and somatosensory processing in an incongruent sensory situation : an EEG approach

Lebar, Nicolas 30 September 2016 (has links)
L’objectif du présent travail de thèse est d’étudier les mécanismes de pondération des informations visuelles et somatosensorielles dans le contrôle du mouvement volontaire visuoguidé de la main lorsque les retours sensoriels de ces deux canaux véhiculent des informations spatiales congruentes ou incongruentes. Une incongruence entre les informations visuelles et somatosensorielles peut-être crée expérimentalement en décalant l’environnement visuel perçu des participants. Dans une telle situation, les participants devaient suivre les contours d’une forme géométrique irrégulière avec un stylet sur une tablette graphique. L’activité cérébrale des régions visuelles, somatosensorielles et pariétales postérieures a été enregistrée en électroencéphalographie, et quantifiée par la mesure de l’amplitude de potentiels évoqués visuels [Etude 1] et de la puissance des bandes de fréquences alpha (8-12 Hz), beta (15-25 Hz) et gamma (50-80 Hz) [Etudes 2 et 3]. Nous avons ainsi montré que le mouvement visuoguidé entraînait une augmentation de l’activité au niveau des aires corticales visuelles, et que le contrôle du mouvement en situation d’incongruence induisait une augmentation supplémentaire de l’excitabilité des cortex visuels, somatosensoriels et pariétaux postérieurs. Ces modulations reflèteraient des mécanismes de pondération du traitement de ces entrées sensorielles dans le but de s’adapter à cette situation. Plus généralement, nos résultats soutiennent l’idée que notre système nerveux est en mesure de moduler localement son activité en fonction de la pertinence du traitement des informations pour répondre aux exigences imposées par le contexte. / The goal of our doctoral research was to investigate the weighting of these sensory inputs in conditions under which they provided either congruent or incongruent information about hand motion. A visuo-somatosensory incongruence can be induced experimentally by shifting the visual feedback of the environment. We asked participants to follow precisely the outline of an irregular shape with a stylus on a digitizing tablet. Brain activity was recorded with an electroencephalographic device, and quantified by measuring visual evoked potentials amplitudes [Study 1], and the power in the alpha (8-12 Hz), beta (15- 25 Hz) and gamma (50-80 Hz) frequency-bands [Studies 2 and 3]. We first evidenced that visually-guided hand movements increased the sensitivity to visual inputs of a large cortical network. Moreover, we showed that controlling movement in a situation with an incongruence between visual and somatosensory input led to a further increase of visual, somatosensory and posterior-parietal cortical excitability. We suggest that these modulations reflect sensory weighting mechanisms in order to attempt to adapt to the sensory incongruence. Interestingly, in the somatosensory areas, we found that the sensory incongruent condition led to a reduction of gamma power, suggesting a reduced integration of somatosensory inputs for controlling movements. Taken together, our findings are in line with the existence of a general sensory gain control mechanism driven by the state of adaptation of the sensorimotor system in a given sensory context. More generally, our results argue for the idea that sensory processing is function of the context-dependent relevance of the sensory inputs.
5

Sensory Integration During Goal Directed Reaches: The Effects of Manipulating Target Availability

Khanafer, Sajida January 2012 (has links)
When using visual and proprioceptive information to plan a reach, it has been proposed that the brain combines these cues to estimate the object and/or limb’s location. Specifically, according to the maximum-likelihood estimation (MLE) model, more reliable sensory inputs are assigned a greater weight (Ernst & Banks, 2002). In this research we examined if the brain is able to adjust which sensory cue it weights the most. Specifically, we asked if the brain changes how it weights sensory information when the availability of a visual cue is manipulated. Twenty-four healthy subjects reached to visual (V), proprioceptive (P), or visual + proprioceptive (VP) targets under different visual delay conditions (e.g. on V and VP trials, the visual target was available for the entire reach, it was removed with the go-signal or it was removed 1, 2 or 5 seconds before the go-signal). Subjects completed 5 blocks of trials, with 90 trials per block. For 12 subjects, the visual delay was kept consistent within a block of trials, while for the other 12 subjects, different visual delays were intermixed within a block of trials. To establish which sensory cue subjects weighted the most, we compared endpoint positions achieved on V and P reaches to VP reaches. Results indicated that all subjects weighted sensory cues in accordance with the MLE model across all delay conditions and that these weights were similar regardless of the visual delay. Moreover, while errors increased with longer visual delays, there was no change in reaching variance. Thus, manipulating the visual environment was not enough to change subjects’ weighting strategy, further i
6

Évaluation du système vestibulaire et ses fonctions chez les personnes sourdes avec ou sans implant cochléaire

Maheu, Maxime 05 1900 (has links)
No description available.

Page generated in 0.0832 seconds