• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lipopolysaccharide-activated signal transduction in cardiac and vascular smooth cells

Wilson, Susan January 2000 (has links)
No description available.
2

The effects of endotoxin and monophosphoryl lipid A on monocyte activity

Saha, Dhanonjoy C. January 1996 (has links)
No description available.
3

Lactate and Immunosuppression in Sepsis

Nolt, Benjamin, Tu, Fei, Wang, Xiaohui, Ha, Tuanzhu, Winter, Randi, Williams, David L., Li, Chuanfu 01 February 2018 (has links)
Serum lactate levels are traditionally interpreted as a marker of tissue hypoxia and often used clinically as an indicator of severity and outcome of sepsis/septic shock. Interestingly, recent studies involving the effects of tumor-derived lactate suggest that lactate itself may have an immunosuppressive effect in its local environment. This finding adds to the recent advances in immunometabolism that shed light on the importance of metabolism and metabolic intermediates in the regulation of innate immune and inflammatory responses in sepsis. In this article, we summarize recent studies, showing that the activation of immune cells requires aerobic glycolytic metabolism and that lactate produced by aerobic glycolysis may play an immunosuppressive role in sepsis.
4

α-Lipoic Acid Attenuates LPS-Induced Cardiac Dysfunction Through a PI3K/Akt-Dependent Mechanism

Jiang, Surong, Zhu, Weina, Li, Chuanfu, Zhang, Xiaojin, Lu, Ting, Ding, Zhengnian, Cao, Kejiang, Liu, Li 01 May 2013 (has links)
Myocardial dysfunction is an important manifestation of sepsis/septic shock. Activation of Phosphatidylinositol 3-kinase(PI3K)/protein kinase B (Akt) signaling pathway has been shown to improve cardiac performance during sepsis/septic shock. We have reported previously that α-lipoic acid (LA) activates PI3K/Akt pathway in neuronal cells. It is possible, therefore, that treatment with LA will attenuate cardiac dysfunction during sepsis/septic shock through a PI3K/Akt-dependent mechanism. To test this possibility, we treated mice with LA prior to lipopolysaccharide (LPS) challenge. Cardiac function was analyzed by echocardiography 6 h after LPS challenge. LPS significantly suppressed cardiac function as evidenced by decreases in EF% and FS% in mice. However, LA pretreatment significantly attenuated cardiac dysfunction following LPS challenge. LA pretreatment also improved survival in LPS-challenged mice. Furthermore, LA markedly attenuated the LPS-induced inflammatory response in myocardium, as evidenced by decreases in the upregulation of VCAM-1, ICAM-1 and iNOS, as well as myocardial leucocytes infiltration. Moreover, LPS challenge significantly decreased the phosphorylation levels of Akt and Gsk-3β, which was prevented by LA pretreatment. More importantly, inhibition of PI3K/Akt signaling by Wortmannin (WM) completely abrogated the LA-induced protection in cardiac dysfunction following LPS challenge. Collectively, our results demonstrated that LA improved cardiac function during endotoxemia. The mechanism was through, at least in part, preserved activation of the PI3K/Akt signaling.
5

α-Lipoic Acid Attenuates LPS-Induced Cardiac Dysfunction Through a PI3K/Akt-Dependent Mechanism

Jiang, Surong, Zhu, Weina, Li, Chuanfu, Zhang, Xiaojin, Lu, Ting, Ding, Zhengnian, Cao, Kejiang, Liu, Li 01 May 2013 (has links)
Myocardial dysfunction is an important manifestation of sepsis/septic shock. Activation of Phosphatidylinositol 3-kinase(PI3K)/protein kinase B (Akt) signaling pathway has been shown to improve cardiac performance during sepsis/septic shock. We have reported previously that α-lipoic acid (LA) activates PI3K/Akt pathway in neuronal cells. It is possible, therefore, that treatment with LA will attenuate cardiac dysfunction during sepsis/septic shock through a PI3K/Akt-dependent mechanism. To test this possibility, we treated mice with LA prior to lipopolysaccharide (LPS) challenge. Cardiac function was analyzed by echocardiography 6 h after LPS challenge. LPS significantly suppressed cardiac function as evidenced by decreases in EF% and FS% in mice. However, LA pretreatment significantly attenuated cardiac dysfunction following LPS challenge. LA pretreatment also improved survival in LPS-challenged mice. Furthermore, LA markedly attenuated the LPS-induced inflammatory response in myocardium, as evidenced by decreases in the upregulation of VCAM-1, ICAM-1 and iNOS, as well as myocardial leucocytes infiltration. Moreover, LPS challenge significantly decreased the phosphorylation levels of Akt and Gsk-3β, which was prevented by LA pretreatment. More importantly, inhibition of PI3K/Akt signaling by Wortmannin (WM) completely abrogated the LA-induced protection in cardiac dysfunction following LPS challenge. Collectively, our results demonstrated that LA improved cardiac function during endotoxemia. The mechanism was through, at least in part, preserved activation of the PI3K/Akt signaling.
6

Barriers affecting compliance with the implementation of early goal directed therapy in the emergency department

Castro, Ivan 01 May 2013 (has links)
Early Goal Directed Therapy (EGDT) has been thoroughly researched and clinically supported to be effective at lowering morbidity and mortality associated with severe sepsis and septic shock. Due to the strengths of its efficacy, it has been integrated as an essential component of the Surviving Sepsis Campaign. However, very few studies have explored the barriers that affect compliance of the protocol in actual practice. The purpose of this study was to synthesize current research findings regarding nursing barriers associated with EGDT. This research was limited to studies performed in the United States between 2003-2012, with patients at least 18 years old, and with data obtained from studies conducted within emergency departments (EDs) only. These findings may serve to help increase the compliance rate with the protocol among nurses in the ED. Findings indicated that compliance rates were mostly affected by two major barriers: 1) Lack of knowledge regarding the presentation and management of sepsis and septic shock, and 2)Lack of resources in the ED to perform the protocol to its full potential. Limitations of the review noted were that most research studies used were in major academic hospitals which limited the generalizability of the findings to other hospital settings. Nursing education should emphasize early recognition and aggressive treatment of sepsis. Future research should focus on addressing the most efficient ways to educate nurses on sepsis presentation and management and the ways these can be implemented in practice.
7

Renal perfusion in experimental sepsis: impact on kidney metabolism and the role of renal autoregulation

Post, Elmar 20 February 2018 (has links)
The etiology of renal dysfunction in sepsis is currently attributed to altered perfusion, microcirculatory abnormalities and cellular alterations. To clarify these mechanisms, we characterized the changes in renal perfusion and cortex metabolism in a large animal model of sepsis. In this model, sepsis was associated with metabolic alterations that may reflect early induction of cortical glycolysis. Septic shock was associated with reduced renal perfusion and decreased cortical and medullary blood flow, followed by signs of anaerobic metabolism in the cortex when flow reductions became critical. Attempts to correct renal hypoperfusion and alleviate the associated perfusion/metabolism mismatch with fenoldopam or renal denervation were unsuccessful. In the final study we focussed on the role of renal autoregulation in experimental sepsis and septic shock. Evidence suggests that higher blood pressure targets are needed in patients with impaired renal autoregulation and septic shock, but the effects of vasopressors should also be considered. We therefore investigated the effects of arginine vasopressin and norepinephrine on renal autoregulation in ovine septic shock. In experimental septic shock, arginine vasopressin was associated with a lower autoregulatory threshold than norepinephrine. As vasopressors may have different effects on renal autoregulation, individualized therapy of blood pressure management in patients with septic shock should take into account drug-specific effects. / Doctorat en Sciences médicales (Médecine) / info:eu-repo/semantics/nonPublished
8

Single, ultra-high dose aminoglycoside therapy in a rat model of E. coli induced septic shock

Pisipati, Amarnath 02 September 2015 (has links)
Bacterial infections are a major cause of morbidity and mortality in both the community and nosocomial settings, particularly among the elderly and chronically ill. Sepsis is the body’s response to antigens and toxins released by the invasive pathogenic organisms that cause infection. When infection is not effectively controlled, sepsis may develop and progress to severe sepsis and septic shock. Early diagnosis and treatment is pivotal for survival in severe sepsis and particularly, septic shock. Our research focuses on developing a novel treatment strategy for septic shock by using single, ultra-high doses of aminoglycosides. In this project, the effect of a single, ultra-high dose of gentamicin in clearing bacteria from the blood and reducing the bacterial burden in vital organs was evaluated in a rat model of E. coli (Bort strain) induced peritonitis with severe sepsis/septic shock. Serum cytokine levels and serum lactate levels were serially measured. Further, the potential adverse effects of ultra-high dosing of aminoglycoside antibiotics in a short-term (9 h) invasive study and long term (180 days) non-invasive study were assessed. Neuromuscular paralyses due to ultra-high doses of aminoglycosides were assessed. In addition, renal injury markers such as serum creatinine and urinary Neutrophil Gelatinase Associated Lipocalin (NGAL) were assayed. The auditory and vestibular function was also assessed after ultra-high dosing of aminoglycoside in the long-term study. We conclude that animals can tolerate ultra-high doses of aminoglycosides with appropriate support. Animals were under neuromuscular paralysis for 28 – 50 minutes and were on ventilator support after single ultra-high doses (80 and 160 mg/kg) of aminoglycoside antibiotics (gentamicin and tobramycin). There was no significant acute or delayed renal or ototoxicity associated with the single, ultra-high dose aminoglycoside therapy. Histology studies of the kidneys and the cochlea of single, ultra-high aminoglycoside dosed animals and untreated control animals were performed after 180 days (6 months). Results indicated that there were no morphological differences between the treated and untreated control animals. Terminal deoxy-nucleotidyl transferase dUTP nick end labeling (TUNEL) assay of kidney tissue indicated that there was no apoptosis of endothelial cells in the tubular and glomerular regions with single, ultra- high dose of aminoglycosides consistent with an absence of ultrahigh dose induced nephrotoxicity. In the septic shock model, the E. coli Bort was below the limit of detection from the blood of the animals within minutes after single, ultra-high dose aminoglycoside administration. After necropsy, bacterial load was determined from all the vital organs and peritoneal fluid (site of infection). The bacterial levels were below the detection limit from the kidneys and there was a significant reduction in bacterial counts from all the remaining organs compared to the infected control animals. A decrease in serum cytokine and serum lactate levels compared to baseline was observed after ultra-high doses of aminoglycosides in the septic shock animals. Our studies have indicated that the ultra-high dose gentamicin is well tolerated by rats. It is highly effective in clearing E. coli Bort from the blood and reducing the bacterial burden in the organs in an experimental model of bacterial peritonitis/septic shock. Further studies in larger animals such as rabbits, sheep, pigs or dogs are required to confirm these results. If these findings are replicated in larger animals, this therapy may be developed further from ‘lab to bedside’ to treat septic shock patients in intensive care units (ICUs). / October 2015
9

Induktion einer Endotoxämie in der humanisierten Maus

Scholbach, Johanna 03 July 2015 (has links)
Die Sepsis ist ein gefürchtetes Krankheitsbild, das in hochentwickelten Industrienationen mit einer hohen Mortalität verknüpft ist und damit zu den häufigsten Todesursachen gehört. Die Pathomechanismen dieses komplexen und heterogenen Krankheitsbildes zu entdecken, gehört momentan zu den Hauptinteressengebieten der Sepsisforschung. Da die Interpretation klinischer Studien aufgrund der Heterogenität des Patientenguts schwierig ist, kommt der Entwicklung adäquater Tiermodelle eine entscheidende Bedeutung zu. Die hierbei gängigen Tiermodelle in Mäusen weisen jedoch Unzulänglichkeiten auf, die die Übertragung der in Tierexperimenten gewonnen Daten auf den klinischen Kontext nur teilweise ermöglichen. Eine Brücke kann hierbei das Tiermodell der humanisierten Maus schlagen, in der, durch Transplantation mit humanen hämatopoetischen Stammzellen, ein humanes Immunsystem reift. Die vorliegende Arbeit beschäftigt sich mit der Fragestellung, inwieweit die humanen Immunzellen in der humanisierten Maus in der Lage sind, auf LPS als Stimmulus zu reagieren. Darüberhinaus wird die Nutzung der Endotoxämie in der humanisierten Maus als alternatives Sepsismodell im Bezug zum klinischen Kontext untersucht. Hierbei ergab sich eine mögliche Nutzung des Endotoxämiemodells in der humanisierten Maus zur genaueren Erforschung des Zytokinmilieus, sowie neuer Surrogatmarker wie Pentraxin 3. Bezüglich der Reaktion einzelner immunologischer Subpopulationen und deren Bedeutung für die Klinik scheint eine Untersuchung an Modellen, die eine B- und T-Zell-Reifung nachvollziehen können und in der murine Residualzellen möglichst gering vorhanden sind, als sinnvoll.
10

Prediction of mortality in septic patients with hypotension

Mayaud, Louis January 2014 (has links)
Sepsis remains the second largest killer in the Intensive Care Unit (ICU), giving rise to a significant economic burden ($17b per annum in the US, 0.3% of the gross domestic product). The aim of the work described in this thesis is to improve the estimation of severity in this population, with a view to improving the allocation of resources. A cohort of 2,143 adult patients with sepsis and hypotension was identified from the MIMIC-II database (v2.26). The implementation of state-of-the-art models confirms the superiority of the APACHE-IV model (AUC=73.3%) for mortality prediction using ICU admission data. Using the same subset of features, state-of-the art machine learning techniques (Support Vector Machines and Random Forests) give equivalent results. More recent mortality prediction models are also implemented and offer an improvement in discriminatory power (AUC=76.16%). A shift from expert-driven selection of variables to objective feature selection techniques using all available covariates leads to a major gain in performance (AUC=80.4%). A framework allowing simultaneous feature selection and parameter pruning is developed, using a genetic algorithm, and this offers similar performance. The model derived from the first 24 hours in the ICU is then compared with a “dynamic” model derived over the same time period, and this leads to a significant improvement in performance (AUC=82.7%). The study is then repeated using data surrounding the hypotensive episode in an attempt to capture the physiological response to hypotension and the effects of treatment. A significant increase in performance (AUC=85.3%) is obtained with the static model incorporating data both before and after the hypotensive episode. The equivalent dynamic model does not demonstrate a statistically significant improvement (AUC=85.6%). Testing on other ICU populations with sepsis is needed to validate the findings of this thesis, but the results presented in it highlight the role that data mining will increasingly play in clinical knowledge generation.

Page generated in 0.0798 seconds