• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Human Promoter Recognition Based on Principal Component Analysis

Li, Xiaomeng January 2008 (has links)
Master of Engineering / This thesis presents an innovative human promoter recognition model HPR-PCA. Principal component analysis (PCA) is applied on context feature selection DNA sequences and the prediction network is built with the artificial neural network (ANN). A thorough literature review of all the relevant topics in the promoter prediction field is also provided. As the main technique of HPR-PCA, the application of PCA on feature selection is firstly developed. In order to find informative and discriminative features for effective classification, PCA is applied on the different n-mer promoter and exon combined frequency matrices, and principal components (PCs) of each matrix are generated to construct the new feature space. ANN built classifiers are used to test the discriminability of each feature space. Finally, the 3 and 5-mer feature matrix is selected as the context feature in this model. Two proposed schemes of HPR-PCA model are discussed and the implementations of sub-modules in each scheme are introduced. The context features selected by PCA are III used to build three promoter and non-promoter classifiers. CpG-island modules are embedded into models in different ways. In the comparison, Scheme I obtains better prediction results on two test sets so it is adopted as the model for HPR-PCA for further evaluation. Three existing promoter prediction systems are used to compare to HPR-PCA on three test sets including the chromosome 22 sequence. The performance of HPR-PCA is outstanding compared to the other four systems.
2

Human Promoter Recognition Based on Principal Component Analysis

Li, Xiaomeng January 2008 (has links)
Master of Engineering / This thesis presents an innovative human promoter recognition model HPR-PCA. Principal component analysis (PCA) is applied on context feature selection DNA sequences and the prediction network is built with the artificial neural network (ANN). A thorough literature review of all the relevant topics in the promoter prediction field is also provided. As the main technique of HPR-PCA, the application of PCA on feature selection is firstly developed. In order to find informative and discriminative features for effective classification, PCA is applied on the different n-mer promoter and exon combined frequency matrices, and principal components (PCs) of each matrix are generated to construct the new feature space. ANN built classifiers are used to test the discriminability of each feature space. Finally, the 3 and 5-mer feature matrix is selected as the context feature in this model. Two proposed schemes of HPR-PCA model are discussed and the implementations of sub-modules in each scheme are introduced. The context features selected by PCA are III used to build three promoter and non-promoter classifiers. CpG-island modules are embedded into models in different ways. In the comparison, Scheme I obtains better prediction results on two test sets so it is adopted as the model for HPR-PCA for further evaluation. Three existing promoter prediction systems are used to compare to HPR-PCA on three test sets including the chromosome 22 sequence. The performance of HPR-PCA is outstanding compared to the other four systems.
3

Probing sequence-level instructions for gene expression / Etude des instructions pour l’expression des gènes présentes dans la séquence ADN

Taha, May 28 November 2018 (has links)
La régulation des gènes est fortement contrôlée afin d’assurer une large variété de types cellulaires ayant des fonctions spécifiques. Ces contrôles prennent place à différents niveaux et sont associés à différentes régions génomiques régulatrices. Il est donc essentiel de comprendre les mécanismes à la base des régulations géniques dans les différents types cellulaires, dans le but d’identifier les régulateurs clés. Plusieurs études tentent de mieux comprendre les mécanismes de régulation en modulant l’expression des gènes par des approches épigénétiques. Cependant, ces approches sont basées sur des données expérimentales limitées à quelques échantillons, et sont à la fois couteuses et chronophages. Par ailleurs, les constituants nécessaires à la régulation des gènes au niveau des séquences ne peut pas être capturées par ces approches. L’objectif principal de cette thèse est d’expliquer l’expression des ARNm en se basant uniquement sur les séquences d’ADN.Dans une première partie, nous utilisons le modèle de régression linéaire avec pénalisation Lasso pour prédire l’expression des gènes par l’intermédiaire des caractéristique de l’ADN comme la composition nucléotidique et les sites de fixation des facteurs de transcription. La précision de cette approche a été mesurée sur plusieurs données provenant de la base de donnée TCGA et nous avons trouvé des performances similaires aux modèles ajustés aux données expérimentales. Nous avons montré que la composition nucléotidique a un impact majeur sur l’expression des gènes. De plus, l’influence de chaque régions régulatrices est évaluée et l’effet du corps de gène, spécialement les introns semble être clé dans la prédiction de l’expression. En second partie, nous présentons une tentative d’amélioration des performances du modèle. D’abord, nous considérons inclure dans le modèles les interactions entres les différents variables et appliquer des transformations non linéaires sur les variables prédictives. Cela induit une légère augmentation des performances du modèles. Pour aller plus loin, des modèles d’apprentissage profond sont étudiés. Deux types de réseaux de neurones sont considérés : Les perceptrons multicouches et les réseaux de convolutions.Les paramètres de chaque neurone sont optimisés. Les performances des deux types de réseaux semblent être plus élevées que celles du modèle de régression linéaire pénalisée par Lasso. Les travaux de cette thèse nous ont permis (i) de démontrer l’existence des instructions au niveau de la séquence en relation avec l’expression des gènes, et (ii) de fournir différents cadres de travail basés sur des approches complémentaires. Des travaux complémentaires sont en cours en particulier sur le deep learning, dans le but de détecter des informations supplémentaires présentes dans les séquences. / Gene regulation is tightly controlled to ensure a wide variety of cell types and functions. These controls take place at different levels and are associated with different genomic regulatory regions. An actual challenge is to understand how the gene regulation machinery works in each cell type and to identify the most important regulators. Several studies attempt to understand the regulatory mechanisms by modeling gene expression using epigenetic marks. Nonetheless, these approaches rely on experimental data which are limited to some samples, costly and time-consuming. Besides, the important component of gene regulation based at the sequence level cannot be captured by these approaches. The main objective of this thesis is to explain mRNA expression based only on DNA sequences features. In a first work, we use Lasso penalized linear regression to predict gene expression using DNA features such as transcription factor binding site (motifs) and nucleotide compositions. We measured the accuracy of our approach on several data from the TCGA database and find similar performance as that of models fitted with experimental data. In addition, we show that nucleotide compositions of different regulatory regions have a major impact on gene expression. Furthermore, we rank the influence of each regulatory regions and show a strong effect of the gene body, especially introns.In a second part, we try to increase the performances of the model. We first consider adding interactions between nucleotide compositions and applying non-linear transformations on predictive variables. This induces a slight increase in model performances.To go one step further, we then learn deep neuronal networks. We consider two types of neural networks: multilayer perceptrons and convolution networks. Hyperparameters of each network are optimized. The performances of both types of networks appear slightly higher than those of a Lasso penalized linear model. In this thesis, we were able to (i) demonstrate the existence of sequence-level instructions for gene expression and (ii) provide different frameworks based on complementary approaches. Additional work is ongoing, in particular with the last direction based on deep learning, with the aim of detecting additional information present in the sequence.

Page generated in 0.1699 seconds