• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 1
  • Tagged with
  • 21
  • 21
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Classification of Repeated Measurement Data Using Growth Curves and Neural Networks

Andersson, Kasper January 2022 (has links)
This thesis focuses on statistical and machine learning methods designed for sequential and repeated measurement data. We start off by considering the classic general linear model (MANOVA) followed by its generalization, the growth curve model (GMANOVA), designed for analysis of repeated measurement data. By considering a binary classification problem of normal data together with the corresponding maximum likelihood estimators for the growth curve model, we demonstrate how a classification rule based on linear discriminant analysis can be derived which can be used for repeated measurement data in a meaningful way. We proceed to the topics of neural networks which serve as our second method of classification. The reader is introduced to classic neural networks and relevant subtopics are discussed. We present a generalization of the classic neural network model to the recurrent neural network model and the LSTM model which are designed for sequential data. Lastly, we present three types of data sets with an total of eight cases where the discussed classification methods are tested. / Den här uppsatsen introducerar klassificeringsmetoder skapade för data av typen upprepade mätningar och sekventiell data. Den klassiska MANOVA modellen introduceras först som en grund för den mer allmäna tillväxtkurvemodellen(GMANOVA), som i sin tur används för att modellera upprepade mätningar på ett meningsfullt sätt. Under antagandet av normalfördelad data så härleds en binär klassificeringsmetod baserad på linjär diskriminantanalys, som tillsammans med maximum likelihood-skattningar från tillväxtkurvemodellen ger en binär klassificeringsregel för data av typen upprepade mätningarn. Vi fortsätter med att introducera läsaren för klassiska neurala nätverk och relevanta ämnen diskuteras. Vi generaliserar teorin kring neurala nätverk till typen "recurrent" neurala nätverk och LSTM som är designade för sekventiell data. Avslutningsvis så testas klassificeringsmetoderna på tre typer av data i totalt åtta olika fall.

Page generated in 0.0727 seconds