• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 8
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 77
  • 77
  • 19
  • 17
  • 16
  • 14
  • 12
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mechanisms of junctional restructuring at the sertoli-sertoli and sertoli-germ cell interfaces during spermatogenesis

Wang, Qiufan, Claire., 王秋帆. January 2008 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
22

Regulation of spermatogenesis in the microenvironment of the rat seminiferous epithelium: the roles of cellpolarity proteins

Wong, Wai-pung, Elissa., 黃懷芃. January 2009 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
23

Fetal germ cell differentiation and the impact of the somatic cells

Cowan, Gillian January 2009 (has links)
Specification of a germ cell lineage and appropriate maturation are essential for the transfer of genetic information from one generation to the next. Germ cells form from pluripotent precursor cells that migrate into the gonadal ridge and undergo commitment to either the female or male lineage. In the fetal ovary, germ cells enter meiotic prophase I, then arrest at the diplotene stage; in the testis germ cells do not begin meiosis until puberty. Abnormal differentiation of germ cells can result in malignant transformation. Somatic cells play a key role in modulating the developmental fate of the germ cells. Research into germ cell development during fetal life has almost exclusively focused on studies in rodents, but we, and others, have reported several fundamental differences in the expression of germ cell specific markers in the human compared with the mouse. The studies described in this thesis have investigated germ cell-specific gene expression and the possible impact of the somatic cells during development. This was achieved by studying human fetal gonads obtained during the 1st and 2nd trimesters of pregnancy and through the use of both wild-type and mutant mouse ES cell lines. Studies on germ cells in the human fetal testis have extended the findings of others, and confirmed that germ cell populations at different stages of maturation co-exist in the human fetal testis, a situation that is in contrast to that in rodents. For example expression of M2A and AP2γ was restricted to the OCT4-positive gonocyte population, while VASA and NANOS1 were localised exclusively to the to the OCT4-negative prespermatogonia. DAZL was expressed in both populations. Analysis also revealed that both the gonocyte and prespermatogonial populations proliferate throughout the 2nd trimester. Recent studies have implicated retinoic acid (RA) in the control of meiotic entry in germ cells of the fetal mouse ovary. In this study we demonstrated for the first time that two genes implicated in the action of RA in mouse gonad, STRA8 and NANOS2, are also expressed in a similar sexspecific- manner in the human fetal gonads, and that the RA receptors are present in both somatic and germ cells suggesting that RA may regulate germ cell function in the human as well as the mouse. However, whilst the mesonephros appears to be the primary site of RA synthesis in the mouse our initial studies indicate that in the human the gonad itself may be a more likely site of RA biosynthesis. In the fetal mouse testis, RA is degraded by the enzyme Cyp26b1 present in the somatic cells and germ cells do not enter meiosis, our novel findings suggest that CYP26B1 is more abundant in the human fetal ovary than the testis, suggesting that meiotic entry may be controlled by an alternative signalling pathway in the human. One of the methods that can aid our understanding of somatic cell gene expression in the gonad is in vitro culture. To date, there have been no published reports of the successful in vitro culture of somatic cells from the human fetal testis. In the current study, populations of human somatic cells were dissociated and maintained in vitro and characterised. Analysis demonstrated that cells expressing mRNAs characteristic of Sertoli cells, Leydig cells and peritubular myoid (PTM) cells were present initially, but long-term culture resulted in downregulation in expression of mRNAs specific for Sertoli cells and Leydig cells, suggesting that these cells either failed to survive or underwent alterations to their phenotype. In contrast PTM/fibroblast cells proliferated in vitro and initially maintained androgen receptor expression. These cultures therefore hold promise for studies into the signalling or cell-cell interactions in testicular somatic cells especially those relevant to the PTM population. Several studies have claimed differentiation of putative germ cells from ES cells. In the current study, analysis of mouse ES cell lines has expanded on results showing that ES cells and early germ cells express a number of genes in common. Kit signalling was shown to be important for ES cell survival as they differentiate although expression of Kit was heterogeneous. We also demonstrated that ES cells that did not express Kit displayed a decreased expression of the early germ cell genes Blimp1, Fragilis and Stella, implicating Kit signalling in the control of germ cell-associated gene expression in ES cells. This may be important to future studies optimising germ cell derivation from ES cells. In conclusion, this study has demonstrated important differences in protein expression patterns in germ cells of the human fetal testis compared to the mouse, and has raised questions about whether the proposed mechanism controlling meiotic entry of germ cells in the mouse can be applied to the human. The establishment of a system for culturing human fetal gonadal somatic cells may lead to further understanding of gene expression and development in the human fetal testis, and data suggest that the Kit/Kitl signalling system may influence germ cell gene expression in mouse ES cells.
24

Targeting and repair of adult testicular somatic cells through viral gene therapy

Darbey, Annalucia Leigh January 2018 (has links)
Androgens are essential for the maintenance of male health and wellbeing. A disturbance in androgen signalling has been associated with a number of clinically relevant disorders such as cardiovascular disease, diabetes and metabolic disorders as well as infertility. Primarily produced in the testis in males, the actions of androgens are mediated through binding to androgen receptor (AR), a member of the nuclear receptor superfamily of ligand-activated transcription factors. The somatic cells of the testis are known to have a number of key roles in both testis function and development and the Sertoli, Leydig and Peritubular Myoid cells are known to express AR in adulthood. It is through AR that some testicular functions are mediated; for example, the Sertoli cells support of complete spermatogenesis with Sertoli cell androgen receptor knockout (SCARKO) testis demonstrating a halt of spermatogenesis before meiosis. However, how androgen signalling is impacting testicular function through each of the somatic cell types is not yet fully understood. Currently, treatments for male reproductive disorders such as hypogonadism (low androgens) and infertility are limited to treatment of the symptoms; using androgen replacement therapy and in vitro fertilisation techniques. This has been, up until recently, a result of a lack of understanding of the causes of these conditions and a lack of resources able to treat them, with research suggesting that a genetic component may be responsible in a number of cases. However, due to the limited genetic investigation diagnosis of men with male reproductive disorders, the wider understanding of the genetics underpinning male hypogonadism and infertility is incomplete. Developments in technology for the investigation and editing of the genetic code are triggering a surge in the exploration of genetic disorders and, in parallel, into the fields of gene delivery vectors and editing technologies. These technologies will allow an expansion into the knowledge and understanding of genetic disorders whilst simultaneously affording the opportunity to exploit this understanding for the development of therapeutics. There have been a small handful of previous studies using technologies such as viral vectors to target the testicular somatic cells and deliver exogenous transgenes with the purpose of both gene editing and repair, all with varying degrees of success. Here, techniques to introduce and target the Leydig and Sertoli cells were investigated to determine the most appropriate methodology for gene delivery to and manipulation of the testis. Refinement of injections into the interstitial compartment were carried out before introducing lentiviral vectors and targeting of Leydig cells was validated and optimised. Lentiviral vectors are able to permanently integrate into the host cell. Surprisingly, analysis of testis post lentiviral injection determined that the lentiviral targeted Leydig cells began to undergo apoptosis one week post injection and were subsequently cleared from the testis after ten days. Contrastingly, this was not the case when adenoviral vectors were introduced into the interstitial compartment, with Leydig cells continuing to express the delivered reporter transgene and, importantly, not expressing markers of apoptosis, ten days post injection. This would suggest that using adenoviral vectors to target the Leydig cell population in the adult testis would be more appropriate than using lentiviral vectors. Previous studies have successfully used lentiviral vectors to target the Sertoli cells in the adult testis via the introduction of the particles through the efferent duct. However, this can result in damage to efferent duct, resulting in blockages and subsequently the seminiferous tubules. To circumvent this, introduction of the lentiviral particles through the rete compartment of the testis at a range of lower injection pressures was examined and injecting at a lower pressure through the rete testis was found to reduce the likelihood of introducing negative impacts on testicular histology when targeting the seminiferous tubules. Using these refined methods of introducing lentiviral vectors, targeted Sertoli cells stably expressed the delivered transgene for up to one year post injection. Using viral vector delivered transgenes for both the investigation of testicular genetic disorders and for the development of therapeutics has great potential. To explore this potential, we first generated a mouse model in which AR was ablated from both the Leydig and Sertoli cells using Cre/LoxP technology, termed the SC-LC-ARKO. Alongside providing a potential model to 'repair' with viral vectors, the SC-LC-ARKO model also provided an additional model for comparison with other models exhibiting ablation of AR from both single somatic cell types and double somatic cell types. This further enabled a characterisation of the roles of AR in adult testicular function, with results suggesting that loss of AR from more than one cell type results in an additive phenotype when compared to single cell knock outs. Despite providing further insight into the roles of AR in the testis, further analysis of the Cre line used to generate the SC-LC-ARKO model indicated that a small number of Leydig cells were expressing the Cre recombinase, resulting in only a small population of Leydig cells with ablated AR. Considering this, to explore the potential of rescuing Sertoli cell AR using lentiviral vectors, we then utilised an already well characterised Sertoli Cell AR knockout (SCARKO) model. Lentiviral vectors expressing mouse AR and monomeric GFP (moeGFP) downstream of a CMV promoter were generated and injected into the rete testis of WT and SCARKO adult (day 100) males at low pressure. The contralateral testis was injected with a lentiviral vector expressing moeGFP alone (also downstream of a CMV promoter) using the same technique. Analysis of testis sections revealed a reintroduction of AR to Sertoli cells in 100% of SCARKO testis injected with lentivirus expressing mouse AR. As a result of this re-expression of AR in Sertoli cells, 66% of the testis injected with lentivirus expressing mouse AR had evidence of morphologically mature elongated spermatids, indicative of ongoing spermatogenesis. These results suggest that a rescue of the infertility phenotype reported in previous studies of SCARKO testis. Also demonstrated is the reversal of the SCARKO testicular phenotype in tubules targeted by the mAR expressing lentiviral vector. This suggests that absence Sertoli cell AR throughout development does not have a permanent impact on the Sertoli cells capacity to support spermatogenesis in adulthood following rescue of SC AR expression in adulthood. In summary, the results of these studies have provided a refinement in the methodologies for targeting the Sertoli and Leydig cells of the adult testis with viral vectors as well as demonstrating successful rescue of a previously reported mouse model exhibiting infertility through reintroduction of a functional gene. Alongside this, comparisons of AR knockout models have afforded insight into maintenance of testis function through AR.
25

Regulation of adhesion between round spermatids and Sertoli cells in the testis

Pearce, Kristen (Kristen Joanne), 1974- January 2003 (has links)
Abstract not available
26

Adrenomedullin in the rat testis its production, functions and regulation in sertoli cells and leydig cells and its interaction with endothelin-1 /

Chan, Yuen-fan. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
27

Mechanisms of junctional restructuring at the sertoli-sertoli and sertoli-germ cell interfaces during spermatogenesis

Wang, Qiufan, Claire. January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2008. / Includes bibliographical references (leaf 138-155) Also available in print.
28

Mechanisms of junctional restructuring at the sertoli-sertoli and sertoli-germ cell interfaces during spermatogenesis /

Wang, Qiufan, Claire. January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2008. / Includes bibliographical references (leaf 138-155) Also available online.
29

Transcriptional regulation of junctional adhesion molecule-B in mouse testicular cells

Wang, Yang, January 2007 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2008.
30

Cell-cell interactions and cell junction dynamics in the mammalian testis

Wong, Ching-hang. January 2005 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2005. / Title proper from title frame. Also available in printed format.

Page generated in 0.0556 seconds