Spelling suggestions: "subject:"serviceoriented space deprogram"" "subject:"serviceoriented space ramprogram""
1 |
A Method for Standardization within the Payload Interface Definition of a Service-Oriented Spacecraft using a Modified Interface Control Document / En metod för standardisering av nyttolastgränsyta för en service-orienterad rymdfarkost via ett modifierat dokumentet för gränssnittskontrollKlicker, Laura January 2017 (has links)
With a big picture view of increasing the accessibility of space, standardization is applied within a service-oriented space program. The development of standardized spacecraft interfaces for numerous and varied payloads is examined through the lens of the creation of an Interface Control Document (ICD) within the Peregrine Lunar Lander project of Astrobotic Technologies, Inc. The procedure is simple, transparent, and adaptable; its applicability to other similar projects is assessed. / För en ökad tillgång till rymden finns det behov av standardisering för en förbättrad service. Utvecklingen av standardiserade rymdfarkostgränsytor för flera och olika nyttolaster har undersökts via ett dokumentet för gränssnittskontroll (ICD) inom projektet Peregrine Lunar Lander för Astrobotic Technologies, Inc. Proceduren är enkel, transparent och anpassningbar; dess användning för andra liknande projekt har värderats.
|
2 |
Evaluation of Potential Propulsion Systems for a Commercial Micro Moon LanderPapavramidis, Konstantinos January 2019 (has links)
In the advent of Space 4.0 era with the commercialization and increased accessibility of space, a requirement analysis, trade-off options, development status and critical areas of a propulsion system for a Commercial Micro Moon Lander is carried out. An investigation of a suitable system for the current mission is examined in the frame of the ASTRI project of OHB System AG and Blue Horizon. Main trajectory strategies are being investigated and simulations are performed to extract the ∆V requirements. Top-level requirements are extracted which give the first input for the propulsion design. An evaluation of the propulsion requirements is implemented which outlines the factors that are more important and drive the propulsion design. The evaluation implements a dual comparison of the requirements where weighting factors are extracted, resulting the main drivers of the propulsion system design. A trade-off analysis is performed for various types of propulsion systems and a preliminary selection of a propulsion system suitable for the mission is described. A first-iteration architecture of the propulsion, ADCS and GNC subsystems are also presented as well as a component list. A first approach of the landing phase is described and an estimation of the required thrust is calculated. A unified Bipropellant propulsion system is proposed which fills out most of the mission requirements. However, the analysis shows that the total mass of the lander, including all the margins, exceeds a bit the mass limitations but no the volume limitations. The results shows that a decrease in payload capacity or the implementation of a different trajectory strategy can lower the mass below the limit. In addition, further iterations in the lander concept which will give a more detailed design, resulting to no extra margins, can drive the mass below the limit. Finally, a discussion on the results is done, addressing the limitations and the important factors that need to be considered for the mission. The viability of the mission due to its commercial aspect is being questioned and further investigation is suggested to be carried out on the ”micro” lander concept. / I tillkomsten av Space 4.0 era med kommersialisering och ökad tillgänglighet av rymden, en kravanalys, avvägningsalternativ, utvecklingsstatus och kritiska områden av ett framdrivningssystem för en kommersiell mikro månlandare bärs ut. En undersökning av ett lämpligt system för det aktuella uppdraget genomförs inom ramen för ASTRI-projektet för OHB System AG och Blue Horizon. Olika strategier för banor undersöks och simuleringar utförs för att extrahera ΔV-kraven. Topp-nivå krav definieras och ger den första inputen för designen av framdrivningssystemet. En utvärdering av framdrivningskraven implementeras och belyser de viktigaste faktorer som driver design av framdrivningssystemet. En avvägningsanalys utförs för olika typer av framdrivningssystem och ett preliminärt urval av ett framdrivningssystem som är lämpligt för uppdraget beskrivs. En arkitektur för framdrivningen, ADCS och GNC-delsystem presenteras såväl som en komponentlista. Ett första tillvägagångssätt av landningsfasen beskrivs och en uppskattning av den nödvändiga dragkraften beräknas. Ett enhetligt Bi-propellant framdrivningssystem föreslås som uppfyller ut de flesta uppdragskraven. Analysen visar dock att summan av månlandarens massa, inklusive alla marginaler, överstiger massbegränsningarna men inte de volymbegränsningarna uppsatta i projektet. Resultaten visar att en minskning av nyttolastkapaciteten eller genomförandet av en annan banstrategi kan minska den totala massan då den inom gränsvärdena. Dessutom, ytterligare iterationer i månlandarens koncept som kommer att ge en mer detaljerad design, vilket resulterar i inga extra marginaler, kan leda till att den uppskattade massan minskar ytterligare. Slutligen förs en diskussion om resultaten, med hänsyn till de begränsningarna och de viktigaste faktorerna som måste beaktas för uppdraget. Lönsamheten hos uppdraget på grund av sin kommersiella aspekt är ifrågasatt och vidare utredning föreslås utförs på ”mikro” månlandare konceptet.
|
Page generated in 0.3917 seconds