• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CURARE : curating and managing big data collections on the cloud / CURARE : curation et gestion de collections de données volumineuses sur le cloud

Kemp, Gavin 26 September 2018 (has links)
L'émergence de nouvelles plateformes décentralisées pour la création de données, tel que les plateformes mobiles, les capteurs et l'augmentation de la disponibilité d'open data sur le Web, s'ajoute à l'augmentation du nombre de sources de données disponibles et apporte des données massives sans précédent à être explorées. La notion de curation de données qui a émergé se réfère à la maintenance des collections de données, à la préparation et à l'intégration d'ensembles de données (data set), les combinant avec une plateforme analytique. La tâche de curation inclut l'extraction de métadonnées implicites et explicites ; faire la correspondance et l'enrichissement des métadonnées sémantiques afin d'améliorer la qualité des données. La prochaine génération de moteurs de gestion de données devrait promouvoir des techniques avec une nouvelle philosophie pour faire face au déluge des données. Ils devraient aider les utilisateurs à comprendre le contenue des collections de données et à apporter une direction pour explorer les données. Un scientifique peut explorer les collections de données pas à pas, puis s'arrêter quand le contenu et la qualité atteignent des niveaux satisfaisants. Notre travail adopte cette philosophie et la principale contribution est une approche de curation des données et un environnement d'exploration que nous avons appelé CURARE. CURARE est un système à base de services pour curer et explorer des données volumineuses sur les aspects variété et variabilité. CURARE implémente un modèle de collection de données, que nous proposons, visant représenter le contenu structurel des collections des données et les métadonnées statistiques. Le modèle de collection de données est organisé sous le concept de vue et celle-ci est une structure de données qui pourvoit une perspective agrégée du contenu des collections des données et de ses parutions (releases) associées. CURARE pourvoit des outils pour explorer (interroger) des métadonnées et pour extraire des vues en utilisant des méthodes analytiques. Exploiter les données massives requière un nombre considérable de décisions de la part de l'analyste des données pour trouver quelle est la meilleure façon pour stocker, partager et traiter les collections de données afin d'en obtenir le maximum de bénéfice et de connaissances à partir de ces données. Au lieu d'explorer manuellement les collections des données, CURARE fournit de outils intégrés à un environnement pour assister les analystes des données à trouver quelle est la meilleure collection qui peut être utilisée pour accomplir un objectif analytique donné. Nous avons implémenté CURARE et expliqué comment le déployer selon un modèle d'informatique dans les nuages (cloud computing) utilisant des services de science des donnés sur lesquels les services CURARE sont branchés. Nous avons conçu des expériences pour mesurer les coûts de la construction des vues à partir des ensembles des données du Grand Lyon et de Twitter, afin de pourvoir un aperçu de l'intérêt de notre approche et notre environnement de curation de données / The emergence of new platforms for decentralized data creation, such as sensor and mobile platforms and the increasing availability of open data on the Web, is adding to the increase in the number of data sources inside organizations and brings an unprecedented Big Data to be explored. The notion of data curation has emerged to refer to the maintenance of data collections and the preparation and integration of datasets, combining them to perform analytics. Curation tasks include extracting explicit and implicit meta-data; semantic metadata matching and enrichment to add quality to the data. Next generation data management engines should promote techniques with a new philosophy to cope with the deluge of data. They should aid the user in understanding the data collections’ content and provide guidance to explore data. A scientist can stepwise explore into data collections and stop when the content and quality reach a satisfaction point. Our work adopts this philosophy and the main contribution is a data collections’ curation approach and exploration environment named CURARE. CURARE is a service-based system for curating and exploring Big Data. CURARE implements a data collection model that we propose, used for representing their content in terms of structural and statistical meta-data organised under the concept of view. A view is a data structure that provides an aggregated perspective of the content of a data collection and its several associated releases. CURARE provides tools focused on computing and extracting views using data analytics methods and also functions for exploring (querying) meta-data. Exploiting Big Data requires a substantial number of decisions to be performed by data analysts to determine which is the best way to store, share and process data collections to get the maximum benefit and knowledge from them. Instead of manually exploring data collections, CURARE provides tools integrated in an environment for assisting data analysts determining which are the best collections that can be used for achieving an analytics objective. We implemented CURARE and explained how to deploy it on the cloud using data science services on top of which CURARE services are plugged. We have conducted experiments to measure the cost of computing views based on datasets of Grand Lyon and Twitter to provide insight about the interest of our data curation approach and environment
2

Architecting the deployment of cloud-hosted services for guaranteeing multitenancy isolation

Ochei, Laud Charles January 2017 (has links)
In recent years, software tools used for Global Software Development (GSD) processes (e.g., continuous integration, version control and bug tracking) are increasingly being deployed in the cloud to serve multiple users. Multitenancy is an important architectural property in cloud computing in which a single instance of an application is used to serve multiple users. There are two key challenges of implementing multitenancy: (i) ensuring isolation either between multiple tenants accessing the service or components designed (or integrated) with the service; and (ii) resolving trade-offs between varying degrees of isolation between tenants or components. The aim of this thesis is to investigate how to architect the deployment of cloud-hosted service while guaranteeing the required degree of multitenancy isolation. Existing approaches for architecting the deployment of cloud-hosted services to serve multiple users have paid little attention to evaluating the effect of the varying degrees of multitenancy isolation on the required performance, resource consumption and access privilege of tenants (or components). Approaches for isolating tenants (or components) are usually implemented at lower layers of the cloud stack and often apply to the entire system and not to individual tenants (or components). This thesis adopts a multimethod research strategy to providing a set of novel approaches for addressing these problems. Firstly, a taxonomy of deployment patterns and a general process, CLIP (CLoud-based Identification process for deployment Patterns) was developed for guiding architects in selecting applicable cloud deployment patterns (together with the supporting technologies) using the taxonomy for deploying services to the cloud. Secondly, an approach named COMITRE (COmponent-based approach to Multitenancy Isolation Through request RE-routing) was developed together with supporting algorithms and then applied to three case studies to empirically evaluate the varying degrees of isolation between tenants enabled by multitenancy patterns for three different cloud-hosted GSD processes, namely-continuous integration, version control, and bug tracking. After that, a synthesis of findings from the three case studies was carried out to provide an explanatory framework and new insights about varying degrees of multitenancy isolation. Thirdly, a model-based decision support system together with four variants of a metaheuristic solution was developed for solving the model to provide an optimal solution for deploying components of a cloud-hosted application with guarantees for multitenancy isolation. By creating and applying the taxonomy, it was learnt that most deployment patterns are related and can be implemented by combining with others, for example, in hybrid deployment scenarios to integrate data residing in multiple clouds. It has been argued that the shared component is better for reducing resource consumption while the dedicated component is better in avoiding performance interference. However, as the experimental results show, there are certain GSD processes where that might not necessarily be so, for example, in version control, where additional copies of the files are created in the repository, thus consuming more disk space. Over time, performance begins to degrade as more time is spent searching across many files on the disk. Extensive performance evaluation of the model-based decision support system showed that the optimal solutions obtained had low variability and percent deviation, and were produced with low computational effort when compared to a given target solution.
3

The Modeling and Management of Computational Sprinting

Morris, Nathaniel Joseph 22 November 2021 (has links)
No description available.
4

Cloud Integrator: uma plataforma para composi??o de servi?os em ambientes de computa??o em nuvem / Cloud Integrator: a platform for composition of services in cloud computing environments

Cavalcante, Everton Ranielly de Sousa 31 January 2013 (has links)
Made available in DSpace on 2014-12-17T15:48:05Z (GMT). No. of bitstreams: 1 EvertonRSC_DISSERT.pdf: 4653595 bytes, checksum: 83e897be68464555082a55505fd406ea (MD5) Previous issue date: 2013-01-31 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / With the advance of the Cloud Computing paradigm, a single service offered by a cloud platform may not be enough to meet all the application requirements. To fulfill such requirements, it may be necessary, instead of a single service, a composition of services that aggregates services provided by different cloud platforms. In order to generate aggregated value for the user, this composition of services provided by several Cloud Computing platforms requires a solution in terms of platforms integration, which encompasses the manipulation of a wide number of noninteroperable APIs and protocols from different platform vendors. In this scenario, this work presents Cloud Integrator, a middleware platform for composing services provided by different Cloud Computing platforms. Besides providing an environment that facilitates the development and execution of applications that use such services, Cloud Integrator works as a mediator by providing mechanisms for building applications through composition and selection of semantic Web services that take into account metadata about the services, such as QoS (Quality of Service), prices, etc. Moreover, the proposed middleware platform provides an adaptation mechanism that can be triggered in case of failure or quality degradation of one or more services used by the running application in order to ensure its quality and availability. In this work, through a case study that consists of an application that use services provided by different cloud platforms, Cloud Integrator is evaluated in terms of the efficiency of the performed service composition, selection and adaptation processes, as well as the potential of using this middleware in heterogeneous computational clouds scenarios / Com o avan?o do paradigma de Computa??o em Nuvem, um ?nico servi?o oferecido por uma plataforma de nuvem pode n?o ser suficiente para satisfazer todos os requisitos da aplica??o. Para satisfazer tais requisitos, ao inv?s de um ?nico servi?o, pode ser necess?ria uma composi??o que agrega servi?os providos por diferentes plataformas de nuvem. A fim de gerar valor agregado para o usu?rio, essa composi??o de servi?os providos por diferentes plataformas de Computa??o em Nuvem requer uma solu??o em termos de integra??o de plataformas, envolvendo a manipula??o de um vasto n?mero de APIs e protocolos n?o interoper?veis de diferentes provedores. Nesse cen?rio, este trabalho apresenta o Cloud Integrator, uma plataforma de middleware para composi??o de servi?os providos por diferentes plataformas de Computa??o em Nuvem. Al?m de prover um ambiente que facilita o desenvolvimento e a execu??o de aplica??es que utilizam tais servi?os, o Cloud Integrator funciona como um mediador provendo mecanismos para a constru??o de aplica??es atrav?s da composi??o e sele??o de servi?os Web sem?nticos que consideram metadados acerca dos servi?os, como QoS (Quality of Service), pre?os etc. Adicionalmente, a plataforma de middleware proposta prov? um mecanismo de adapta??o que pode ser disparado em caso de falha ou degrada??o da qualidade de um ou mais servi?os utilizados pela aplica??o em quest?o, a fim de garantir sua a qualidade e disponibilidade. Neste trabalho, atrav?s de um estudo de caso que consiste de uma aplica??o que utiliza servi?os providos por diferentes plataformas de nuvem, o Cloud Integrator ? avaliado em termos da efici?ncia dos processos de composi??o de servi?os, sele??o e adapta??o realizados, bem como da potencialidade do seu uso em cen?rios de nuvens computacionais heterog?neas

Page generated in 0.0305 seconds