• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 7
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 57
  • 16
  • 13
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation Of The Effect Of Dissimilar Channel Angular Pressing Method To The Mechanical And Microstuctural Properties Of 6061 Aluminum Alloy Sheets

Kibar, Alp Aykut 01 July 2010 (has links) (PDF)
Dissimilar Channel Angular Pressing (DCAP) method is an effective Severe Plastic Deformation (SPD) technique to improve the mechanical properties of sheets or strips by producing ultrafine grains. The aim of this study is to investigate the evolution of the microstructure and the improvement in mechanical properties of 6061 Al-alloy strips deformed by DCAP up to 5 passes. Mechanical properties such as hardness and strength have been observed to increase up to a certain strain level depending on the microstructural evolution. These microstructural changes were investigated by the characterization studies of XRD, SEM and TEM analysis of the DCAPed samples indicating the subgrain formation, changes in the dislocation density and dislocation behaviors.
12

Shape memory response and microstructural evolution of a severe plastically deformed high temperature shape memory alloy (NiTiHf)

Simon, Anish Abraham 12 April 2006 (has links)
NiTiHf alloys have attracted considerable attention as potential high temperature Shape Memory Alloy (SMA) but the instability in transformation temperatures and significant irrecoverable strain during thermal cycling under constant stress remains a major concern. The main reason for irrecoverable strain and change in transformation temperatures as a function of thermal cycling can be attributed to dislocation formation due to relatively large volume change during transformation from austenite to martensite. The formation of dislocations decreases the elastic stored energy, and during back transformation a reduced amount of strain is recovered. All these observations can be attributed to relatively soft lattice that cannot accommodate volume change by other means. We have used Equal Channel Angular Extrusion (ECAE), hot rolling and marforming to strengthen the 49.8Ni-42.2Ti-8Hf (in at. %) material and to introduce desired texture to overcome these problems in NiTiHf alloys. ECAE offers the advantage of preserving billet cross-section and the application of various routes, which give us the possibility to introduce various texture components and grain morphologies. ECAE was performed using a die of 90º tool angle and was performed at high temperatures from 500ºC up to 650ºC. All extrusions went well at these temperatures. Minor surface cracks were observed only in the material extruded at 500 °C, possibly due to the non-isothermal nature of the extrusion. It is believed that these surface cracks can be eliminated during isothermal extrusion at this temperature. This result of improved formability of NiTiHf alloy using ECAE is significant because an earlier review of the formability of NiTiHf using 50% rolling reduction concluded that the minimum temperature for rolling NiTi12%Hf alloy without cracks is 700°C. The strain level imposed during one 90° ECAE pass is equivalent to 69% rolling reduction. Subsequent to ECAE processing, a reduction in irrecoverable strain from 0.6% to 0.21% and an increase in transformation strain from 1.25% to 2.18% were observed at a load of 100 MPa as compared to the homogenized material. The present results show that the ECAE process permits the strengthening of the material by work hardening, grain size reduction, homogeneous distribution of fine precipitates, and the introduction of texture in the material. These four factors contribute in the increase of stability of the material. In this thesis I will be discussing the improvement of mechanical behavior and stability of the material achieved after various passes of ECAE.
13

Microstructural breakdown and scale-up effects in equal channel angular extrusion of cast copper

Kadri, Shabibahmed Jehangir 30 October 2006 (has links)
The primary objectives of this study were: (1) to verify the effectiveness of ECAE to induce equal amounts of strain and grain refinement in bars of different cross-sectional areas, (2) to determine the effectiveness of ECAE in breaking down the as-cast macrostructure in CDA 101 Cu and in producing a homogeneous material containing micron-scale grains upon recrystallization, and (3) to determine a thermomechanical processing (TMP) schedule (from the ones examined) that produces the best microstructure in terms of grain size and uniformity. The effects of extrus ion route, levels of strain and intermediate heat treatment were investigated. To achieve the first objective, bars having square cross-sections of three different sizes, 19 mm, 25 mm and 50 mm, were processed up to eight ECAE passes through routes A, B, C and E. To achieve the second and third objectives, bars were processed up to eight ECAE passes with and without intermediate heat treatments through routes Bc, C, E and F. ECAE processing was carried out in a 90o extrusion die with sliding walls at an extrusion speed of 2.5 mm/s. Recrystallization studies were carried out on the processed material to evaluate the recrystallization behavior and thermal stability of the material. The as-worked and recrystallized materials were characterized by Vickers microhardness, optical microscopy (OM) and transmission electron microscopy (TEM). Results indicate that similar hardness values, sub-grain morphology and recrystallized grain size are generated in the three bars having different cross-sectional sizes processed through ECAE. ECAE is shown to induce uniform strain in all three billet sizes. ECAE is therefore shown to be effective in scale-up to a size of at least 50 mm, with larger billets giving better load efficiency. Results from the later parts of this study indicate that eight extrusion passes via route Bc produces the best microstructure in terms of grain size and microstructural uniformity. The routes can be arranged in the sequence Bc> E, F> C for their ability to produce a uniform recrystallized microstructure with small average grain size. Macroscopic shear bands are sometimes generated during extrusion depending upon the initial grain morphology and texture of the material.
14

Fabrication of amorphous metal matrix composites by severe plastic deformation

Mathaudhu, Suveen Nigel 30 October 2006 (has links)
Bulk metallic glasses (BMGs) have displayed impressive mechanical properties, but the use and dimensions of material have been limited due to critical cooling rate requirements and low ductility. The application of severe plastic deformation by equal channel angular extrusion (ECAE) for consolidation of bulk amorphous metals (BAM) and amorphous metal matrix composites (AMMC) is investigated in this dissertation. The objectives of this research are a) to better understand processing parameters which promote bonding between particles and b) to determine by what mechanisms the plasticity is enhanced in bulk amorphous metal matrix composites consolidated by ECAE. To accomplish the objectives BAM and AMMCs were produced via ECAE consolidation of Vitreloy 106a (Zr58.5Nb2.8Cu15.6Ni12.8Al10.3-wt%), ARLloy #1 (Hf71.3Cu16.2Ni7.6Ti2.2Al2.6 -wt%), and both of these amorphous alloys blended with crystalline phases of W, Cu and Ni. Novel instrumented extrusions and a host of postprocessing material characterizations were used to evaluate processing conditions and material properties. The results show that ECAE consolidation at temperatures within the supercooled liquid region gives near fully dense (>99%) and well bonded millimeter scale BAM and AMMCs. The mechanical properties of the ECAE processed BMG are comparable to cast material: σf = 1640 MPa, εf = 2.3%, E = 80 GPa for consolidated Vitreloy 106a as compared to σf = 1800 MPa, εf = 2.5%, E = 85 GPa for cast Vitreloy 106, and σf = 1660 MPa, εf = 2.0%, E = 97 GPa for ARLloy #1 as compared to σf = 2150 MPa, εf < 2.5%, E = 102 GPa for Hf52Cu17.9Ni14.6Ti5Al10. The mechanical properties of AMMCs are substandard compared to those obtained from melt-infiltrated composites due to non-ideal particle bonding conditions such as surface oxides and crystalline phase morphology and chemistry. It is demonstrated that the addition of a dispersed crystalline phase to an amorphous matrix by ECAE powder consolidation increases the plasticity of the amorphous matrix by providing locations for generation and/or arrest of adiabatic shear bands. The ability of ECAE to consolidated BAM and AMMCs with improved plasticity opens the possibility of overcoming the size and plasticity limitations of the monolithic bulk metallic glasses.
15

Microstructure and Mechanical Property of Heavily Deformed Al-Sc Alloy Having Different Starting Microstructures / 異なる初期組織を有するAl-Sc合金の巨大ひずみ加工に伴う組織と機械的性質の変化

Ehsan Borhani 23 January 2012 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第16510号 / 工博第3503号 / 新制||工||1530(附属図書館) / 29167 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 落合 庄治郎, 教授 田中 功 / 学位規則第4条第1項該当
16

Mikrostruktura a mechanické vlastnosti hliníkových slitin po intenzivní plastické deformaci / Microstructure and mechanical properties of aluminium alloys prepared by severe plastic deformation

Bajer, Jan January 2015 (has links)
New technologies of components assembling in car and aircraft industries and requests on improved mechanical and corrosion properties of metallic materials in the packing industry activate the utilization of highly innovative and unconventional manufacturing processes. There are only a limited number of processing, that retain the original material thickness and in an appropriate manner modify material properties. These are different types of annealing, severe plastic deformation methods or combination of both. In recent years constrained groove pressing (CGP) was devoloped with this method the grain size can be reduced from tens of micrometers to sub-micrometers. The present work is focused on a study of evolution of microstructure and mechanical properties of two alloys based on EN AW 3003 after CGP deformation and subsequent annealing.
17

Studium jemnozrnných materiálů připravovaných metodou intenzivní plastické deformace / Study of ultrafine-grained materials prepared with different methods of severe plastic deformation

Krajňák, Tomáš January 2015 (has links)
Title: Study of ultrafine-grained materials prepared with different methods of severe plastic deformation Author: RNDr. Tomáš Krajňák Department: Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague Supervisor: Doc. RNDr. Kristián Máthis, PhD., Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague Abstract: Interstitial free steel with ultrafine-grained (UFG) structure was prepared by high-pressure torsion (HPT). The development of the microstructure as a function of the number of HPT turns was studied at the centre, half-radius and periphery of the HPT-processed disks by X-ray line profile analysis (XLPA), positron annihilation spectroscopy (PAS) and electron microscopy. The dislocation densities and the dislocation cell sizes determined by XLPA were found to be in good agreement with those obtained by PAS. The evolution of the dislocation density, the dislocation cell and grain sizes, the vacancy cluster size, as well as the high-angle grain boundary (HAGB) fraction was determined as a function of the equivalent strain. It was found that first the dislocation density saturated, then the dislocation cell size reached its minimum value and finally the grain size got saturated. For very high strains after the...
18

Mikrostruktura a vlastnosti lehké slitiny AZ31 připravené plynulým odléváním mezi válce / Microstructure and mechanical properties of lightweight structural AZ31 alloy prepared by twin-roll casting method.

Zimina, Mariia January 2016 (has links)
Title: Microstructure and mechanical properties of lightweight structural AZ31 alloy prepared by twin-roll casting method Author: Mariia Zimina Abstract: Microstructure of AZ31 twin-roll cast magnesium alloy was studied using light optical, electron and atomic force microscopy. The effect of annealing temperature on the microstructure was tested. Mechanical properties of a thin magnesium strip were investigated by means of microhardness tests and tensile tests at a relatively low strain rate 10-3 s-1 . Results show that the ductility of the twin roll cast strip increases with increasing deformation temperature, however, a remarkable decrease was observed at about 200 řC. This effect appears also in a conventionally cast ingot of a master alloy and is caused by a change of a deformation mode occurring at this temperature. Moreover, the effect of severe plastic deformation on the microstructure and mechanical properties was studied. Equal channel angular pressing was applied on magnesium strip samples and lead to a significant grain refinement accompanied by an unfavorable strengthening of the initial basal texture, which is effectively suppressed by a subsequent annealing. A constrained groove pressing was for the first time successfully applied on AZ31 twin-roll cast strip leading to an increase of...
19

Mikrostruktura a teplotní stabilita ultra jemnozrnných Mg-Zn-Y slitin / Microstructure and thermal stability of ultra fine grained Mg-Zn-Y alloys

Vlasák, Tomáš January 2017 (has links)
The aim of this diploma thesis is to investigate microstructure and thermal stability of ultra fine grained magnesium alloys. The thesis first summarises methods using plastic deformation in order to achieve ultra fine grained structure that are used to process metals. Then experimental methods employed in the experimental part including microhardness testing, scanning electron microscopy and positron annihilation spectroscopy are described. Brief summary of previous research on MgZnY alloys strengthened by quasicrystalline phases and Mg22Gd alloys is given. Finally, results of experimental investigation of MgZnY alloys with various Zn/Y ratios and Mg22Gd alloy are discussed. These results suggest that presence of phases in MgZnY alloys depend on Zn/Y ratio, hardness of these alloys depends on Zn content and that rapid cooling of MgZnY alloys annealed at 500 řC lead to significant increase in volume fraction of quasicrystalline icosahedral phase. In the second section of the experimental part thermal behaviour of Mg22Gd alloy is investigated. Furthermore, formation of GdH2 particles in Mg22Gd is examined and attributed to reaction of hydrogen decomposed from water vapour with gadolinium in areas rich in gadolinium. Finally, significant hardening of Mg22Gd alloy processed by high pressure torsion has been...
20

Changes in Microstructure and Mechanical Properties of Aluminum Alloys Heavily Deformed by Torsion / ねじり変形により強加工されたアルミニウム合金の組織および機械的性質の変化

Sunisa Khamsuk 25 November 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第17956号 / 工博第3804号 / 新制||工||1582(附属図書館) / 30786 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 松原 英一郎, 教授 安田 秀幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.1658 seconds