Spelling suggestions: "subject:"sewage purification"" "subject:"sewage urification""
121 |
Alternatiewe lae koste rioolstelselsRossouw, Pieter Arnold January 1992 (has links)
Thesis (M.Dip. Tech (Civil Engineering))--Cape Technikon, 1992. / Statistieke toon dat die bevolking in suid-Afrika binne die
volgende 25 jaar gaan verdubbel, terwyl die stedelike
bevolking gedurende dieselfde tyd gaan vervierdubbel. Daar
word verwag dat die grootste bevolkingstoename in die lae
inkomstegroep, waarvan die grootste deelongeskoold is, gaan
plaasvind.
Verskeie stede en dorpe in ons land kan uit ondervinding oor
die afgelope 4 of 5 jaar getuig van die onaanvaarbare
gesondheidsrisiko wat deur onbeheerde en onbeplande plakkery
meegebring word. Aangesien konvensionele
gravitasieriolering baie duur is om te installeer en die
metodes wat vir die verwerking en suiwering van die
afvalwater gebruik word soms 'n hoogs tegnologiese en dus
duur grondslag het, is dit noodsaaklik om alternatiewe vorms
van rioolverwydering en rioolsuiwering te ondersoek. Die
klem moet val op 'n bekostigbare en geskikte alternatiewe
vorm van sanitasie.
uit hierdie ondersoek het dit geblyk dat
rioolverwyderingstelsels hoofsaaklik in drie groepe verdeel
kan word. Eerstens is daar die stelsels waar die riool op
die terrein verwerk word, tweedens kan riool vanaf die
terrein op 'n ander neutrale terrein verwerk word of, in die
derde geval kan 'n kombinasie van die twee stelsels gebruik
word.
Die term 'verwerking op terrein' verwys na die verwerking of
gedeeltelike verwerking van riool op terrein. Stelsels wat
onder hierdie kategorie ressorteer, is gewoonlik die
goedkoopste, maar hou in sommige gevalle 'n gesondheids- en
besoedelingsgevaar in. Die volgende stelsels word onder
hierdie kategorie geklassifiseer: Putlatrines, Giet-Spoel stelsels, Reid se reuklose klosette, Septiese tenks en Aqua-
Privies
|
122 |
Water quality, biomass and extracellular polymeric substances in an integrated algae pond systemJimoh, Taobat Adekilekun January 2018 (has links)
Integrated algae pond systems (IAPS) combine the use of anaerobic and aerobic bioprocesses to effect wastewater treatment. Although, IAPS as a technology process offers many advantages including efficient and simultaneous N and P removal, no requirement for additional chemicals, O2 generation, CO2 mitigation, and a biomass with potential for valorization, a lack of technological advancement and the need for large land area, has limited the reach of this technology at industrial scale. In mitigation, peroxonation was introduced as a tertiary treatment unit and its effect on COD and TSS of IAPS treated water investigated. An effort was made to characterize the soluble but persistent COD in IAPS treated water and, productivity of the HRAOP mixed liquor was investigated to gain insight into the potential use of this biomass. Results show that peroxone treatment effectively reduced COD, TSS, and nutrient load of IAPS water without any significant impact on land area requirement. Indeed, summary data describing the effect of peroxone on quality of IAPS-treated water confirmed that it complies with the general limit values for either irrigation or discharge into a water resource that is not a listed water resource for volumes up to 2 ML of treated wastewater on any given day. Extraction followed by FT-IR spectroscopy was used to confirm albeit tentatively, the identity of the soluble but persistent COD in IAPS treated water as MaB-floc EPS. Results show that MaB-flocs from HRAOPs are assemblages of microorganisms produced as discrete aggregates as a result of microbial EPS production. A relationship between photosynthesis and EPS production was established by quantification of the EPS following exposure of MaB-flocs to either continuous light or darkness. Several novel strains of bacteria were isolated from HRAOP mixed liquor and 16S ribosomal genomic sequence analysis resulted in the molecular characterization of Planococcus maitriensis strain ECCN 45b. This is the first report of Planococcus maitriensis from a wastewater treatment process. Productivity and change in MaB-flocs concentration, measured as mixed liquor suspended solids (MLSS) between morning and evening were monitored and revealed that MLSS is composed of microalgae and bacteria but not fungi. Concentration varied from 77 mg L-1 in September (winter) to 285 mg L-1 in November (spring); pond productivity increased from 5.8 g m-2 d-1 (winter) to 21.5 g m-2 d-1 (spring); and, irrespective of MLSS concentration in late afternoon, approximately 39% was lost overnight, which presumably occurred due to passive removal by the algae settling pond. The outcomes of this research are discussed in terms of the quality of treated water, and the further development of IAPS as a platform technology for establishing a biorefinery within the wastewater treatment sector.
|
123 |
The independent high rate algal pond as a unit operation in tertiary wastewater treatmentClark, Stewart James January 2002 (has links)
The development of the High Rate Algal Pond (HRAP) as an independent tertiary treatment unit operation for phosphate and nitrate removal is reported. A novel Integrated Algal Ponding System (lAPS) design is proposed for nutrient removal from the effluents of both a conventional domestic sewage treatment plant and from an Advanced Integrated Wastewater Ponding System (AIWPS). The viability of an independently operated HRAP has been identified and termed the Independent High Rate Algal Pond (l-HRAP). A 500 m² pilot 1- HRAP was operated in such a way as to facilitate the precipitation of calcium phosphate, known to be controlled by pH (greater than 9.4) and resulting in final phosphate levels of less than 1 mg.L⁻¹ as P0₄-P. The incorporation of the I-HRAP into a denitrification process was also investigated. Continuously fed column reactors, utilising algal biomass as a carbon source, showed that the heterotrophic bacterial community dominant in the anaerobic algal sludge were denitrifying the nitrate in the feed. It was demonstrated that as the cultures were stressed (using increased nitrate concentrations, anaerobiosis and light starvation) total polysaccharide (TPS) concentrations increased, with a notable increase 111 the exopolysaccharide (EPS) fraction. These experiments corroborated the hypothesis that harvested microalgal biomass can be manipulated to produce, and release, exopolymeric substances under stress conditions, and which may serve as carbon source for denitrification. In both batch flask studies and in laboratory-scale reactor systems, harvested microalgal biomass from an HRAP was shown to produce exopolymeric substances under stress conditions. Initial high loading-rates of greater than 20 mg.L⁻¹ NO₃-N resulted in double the amount of exopolysaccharide production than in flasks with initial low loading-rates (less than 5 mg.L⁻¹ NO₃-N). Making use of an upflow anaerobic sludge blanket-type degrading-bed reactor, and an anaerobic, flooded trickle filter (ANTRIC) receiving HRAP effluent, the relationship between denitrification and the changes in polysaccharide content was investigated. This phenomenon has considerable beneficial implications in biological wastewater treatment systems where high nitrate concentration in the final effluent is a potential mitigating factor. Identification of the heterotrophic bacteria active in the denitrification process was attempted. This study presents a first report on the development and operation of the I-HRAP and has been followed by a technical-scale pilot plant evaluation of the process in the tertiary treatment of domestic wastewaters.
|
124 |
The selective dechlorination of poly-chlorophenolsThomas, Maxwell Paul January 2009 (has links)
Liquid phase catalytic hydrodechlorinations can provide a convenient and environmentally friendly method for treating organic chlorinated compounds in waste streams generated during the manufacturing of agrochemicals. During such treatment hydrochloric acid is generated as a by-product, which can be easily neutralized employing a base to yield an inorganic salt. This work describes the results obtained during the liquid phase hydrodechlorination of 2,6-dichlorophenol (2,6-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP). The hydrodechlorination of these chlorinated phenolic compounds in a mixture of methanol and water was investigated using supported and unsupported palladium catalysts to yield lower chlorinated phenols or phenol. Various parameters were investigated such as catalyst concentration, ammonium formate concentration, effect of base addition and effect of temperature. During this study two methods of hydrodechlorination were also investigated such as hydride-transfer hydrogenolysis, using ammonium formate, and hydrogenolysis, using dihydrogen. These methods offer a mild treatment in terms of the reaction temperature with temperatures used below 800C. A comparison of the palladium catalyst systems using these methods also showed that Pd/C produced the best results in terms of the hydrodechlorination rate and the selectivity towards phenol. When the ammonium formate method was used, complete hydrodechlorination of both substrates was achieved in 1h of reaction time at a selectivity of 100 percent towards phenol. A comparison of the method using dihydrogen and Pd/C showed that the reaction rate and the selectivity towards phenol during the hydrodechlorination of 2,6-DCP were 87.92 percent and 93.30 percent. Similarly, the reaction rate and selectivity during 2,4,6- TCP hydrodechlorination were 63.77 percent and 70.57 percent. These results were achieved in a reaction time of 3 hours. A high catalyst loading increases the reaction rate at the expense of selectivity, due to the formation of cyclohexanone, formed during further hydrogenation of phenol. The formation of cyclohexanone was limited at high temperatures (ca. 800C) with none detected during the hydrodechlorination of 2,6-DCP and 0.19 percent during the hydrodechlorination of 2,4,6-TCP. Evaluation of the hydrodechlorination parameters showed that the catalytic efficiency of the Pd/C catalysts was inhibited as the reaction proceeded due to the formation of HCl as by-product. A significant increase in the reaction rate was achieved when the reaction was performed in the presence of an inorganic base, which neutralized HCl.
|
125 |
Improvements in the aerobic digestion of waste activated sludge through chemical control of mixed liquor pH : pilot-scale investigationsAnderson, Bruce Campbell January 1989 (has links)
Pilot-scale ambient and low temperature research into the enhancement of aerobic digestion of waste activated sludge, through control of mixed liquor pH (MLpH), was performed using an extended aeration and a high rate waste sludge. To offset MLpH decreases encountered during nitrification, Ca(OH)₂ and NaHCO₃ were used to control MLpH in the series pH 6, 7 and 8. The performance and behaviour of the digesters, under both controlled and uncontrolled MLpH conditions, were monitored through parameters related to volatile mass reduction, sludge mass metabolism, quality of digested end-product and soluble characteristics of the digester effluent.
Volatile mass reduction was significantly affected by MLpH control, under certain conditions. Improvements in reduction performance of >100% over the uncontrolled condition were noted, depending on sludge origin; however, it was concluded that only certain temperature ranges should be targeted for the most effective use of MLpH control, since use of MLpH control in ranges wherein little improvement would be realized was felt to be uneconomical.
Analysis of volatile mass reduction rates, based on a series of 1 day batch conditions (necessitated by the reactor flow scheme and the variability of the digestion process), demonstrated that reactor performance oscillated around a mean performance value; MLpH control acted to reduce these oscillations, such that the digesters performed closer to the mean value more of the time. Temperature sensitivity coefficients were quite variable, and a single value did not describe all situations. It was proposed that θ was influenced by digestion system, operating temperature, sludge type and MLpH level. The use of this coefficient for determining the operating ranges most suitable for MLpH control was advanced.
The fate of the nutrients nitrogen and phosphorus were greatly influenced by MLpH control. The use of Ca(OH)₂ resulted in less release of phosphorus from the solid phase, with subsequently low effluent PO₄-P concentrations in the neutral MLpH range. The drawback of this reaction was found to be the production of inert inorganic sludge solids, thereby illustrating the need for a trade-off between the various benefits and drawbacks of the enhanced digestion process. Nitrification proceeded at all temperatures, and in conditions previously thought to be inhibitory to the chemolithotrophic organisms. Digester effluent quality was improved through MLpH control, but substantial concentrations of NOx-N were observed under some conditions.
Based on direct comparisons with previous lab-scale research, it was concluded that the enhancement process had very good potential for implementation at the full-scale level, either for the improvement of existing underdesigned processes, or for the initial design of more efficient aerobic digestion facilities. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
|
126 |
Design of decoupling control and time-delay compensation for a CFSTRChen, Liang January 1990 (has links)
This thesis is concerned with the design of a decoupling compensator and a time-delay compensator for a nonisothermal continuous flow stirred tank reactor (CFSTR). An expression for the analysis of interaction of the two-variable CFSTR was theoretically derived by using the relative gain method (RGM). For the purpose of improving the stability of the decoupling control system, undercompensation for a decoupled CFSTR system was suggested and the robustness test of such undercompensation decoupler to the modelling error was studied. On the other hand, the proposed time-delay compensation method, unlike conventional Smith's scheme, can rely on the basic property of gain-invariant time-delay. The stability of this time-delay compensation method is not affected by the CFSTR control system time-variant time-delay, while its compensation structure has the same features as the Smith compensator.
The design of a decoupler and that of a time-delay compensator are independent of each other. All compensation structures are physically realizable.
The theoretical results are supported by simulation. Simulation results for a CFSTR demonstrate that the undercompensation decoupling control can tolerate a relatively wide modelling error and reduce the sensitivity of the CFSTR process to parameter variations and unwanted disturbances. Also, simulation results show that the proposed time-delay compensator can provide an improvement over the conventional Smith compensator. / Applied Science, Faculty of / Chemical and Biological Engineering, Department of / Graduate
|
127 |
Anoxic-aerobic digestion of waste activated sludge : a lab scale comparison to aerobic digestion with and without lime additionJenkins, Christopher Jay January 1988 (has links)
A lab-scale study of anoxic-aerobic digestion of waste activated sludge was performed, using 6 litre digesters, and operated in a semi - continuous (fed-once-a-day) manner with solids retention times (SRTs) of 20, 15 and 10 days and mixed-liquor temperatures of 20 °C and 10 °C. Raw sludge was obtained from a pilot-scale biological phosphorus removal facility operating at U.B.C. Fresh sludge was obtained daily and digested by three different digestion modes: anoxic-aerobic, aerobic with lime addition and aerobic.
Two aerobic control digesters were run in parallel with the anoxic-aerobic digesters. One of the aerobic digesters received a daily dose of lime slurry. All three digesters were operated under identical conditions (except for the cycling of air supply to the anoxic-aerobic digesters) so that direct comparison could be made between the three digestion modes. Comparisons were made on the basis of five main parameters related to: (1) digestion kinetics, (2) digested sludge characteristics, (3) supernatant quality, (4) ORP monitoring, and (5) an overall rating system.
Percent volatile suspended solids (VSS) reduction was used as one performance variable. Despite using only 42 percent of the air required by the two controls, anoxic-aerobic digestion showed comparable percent VSS reductions. All three digestion modes showed increased solids reduction with increasing SRT and temperature. There was a linear relationship between percent TVSS and the product of SRT and temperature.
All three digestion modes had a propensity to retain their percent nitrogen and phosphorus within their solids. However, with respect to retaining phosphorus, the aerobic controls were the least effective. Anoxic-aerobic digestion maintained neutral mixed-liquor pH (MLpH) throughout. Lime controls were maintained at MLpH close to neutral. Aerobic digestion, in general, resulted in MLpH levels below 5.0, however, there were periods when the MLpH of the aerobic digesters varied widely between 4.2 and 6.8.
Supernatant quality was superior for the anoxic-aerobic digesters. Due to the incorporation of non-aerated periods, there was almost 100 percent denitrification of nitrates produced during the aerated time. This nitrification-denitrification resulted in very low soluble nitrogen levels in the effluent, as well as considerable removal of nitrogen gas. Neither of the controls showed this ability. The lime and aerobic controls produced high levels of effluent nitrates, as well as occasional measurements of ammonia and nitrite.
Phosphorus levels were lowest for the lime control and anoxic-aerobic digesters. Presumably, due to reduced pH levels, the soluble phosphorus levels from the aerobic digesters were 2 to 3 times those in the lime or anoxic-aerobic digesters. Alkalinity was conserved in the anoxic-aerobic digesters as well as the lime control. However, the purely aerobic digesters consumed alkalinity until very little buffering capacity remained.
Oxidation-reduction potential (ORP) was used as a means of monitoring the anoxic-aerobic digesters on a real time basis. ORP was particularly useful during the non-aerated periods, due to the fact that, at those times, dissolved oxygen was undetectable. Characteristic real time ORP profiles were revealed. Slope changes correlated well with events of theoretical and engineering interest; the' disappearance of ammonia and nitrates, as well as the (dis)appearance of detectable dissolved oxygen, could be predicted by these slope changes. As a result of the findings, ORP may prove to be an ideal parameter for the control of the anoxic-aerobic digestion process.
Finally, an overall rating system was developed. The results of this study suggest that, for the digestion of waste activated sludge, anoxic-aerobic digestion out-performed both lime-control and conventional digestion modes. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
|
128 |
Recycling wastes through thermophilic fermentationShepherd, David William January 1977 (has links)
Efficient treatment of waste materials from agricultural operations is a problem in most of the countries of the world. This is particularly true where livestock are being reared in large high-production confinement housing systems. There are several treatment systems available to handle the wastes from this type of operation. These systems are described with particular emphasis on thermophilic fermentation. Thermophilic treatment of wastes offers several advantages over the other types of waste treatment systems. The thermophilic system at the University of British Columbia differs from most other high-temperature systems in that no external heat source is provided.
Experiments were carried out which show that the heat necessary to maintain the temperature in the thermophilic range comes solely from microbial activity. The actions of agitation and aeration do not provide any input of heat into the fermenter. The foam which forms on the top of the liquid during a fermentation was shown to be a good insulator.
Feeding trials conducted with the liquid product from thermophilic fermentation demonstrated that this liquid can be substituted for water in the diet of pigs older than twenty-eight days of age with no harmful effects. It is possible that pigs older than fifty-six days of age will be able to utilize the nutrients in the liquid more efficiently and increase their rate of gain without increasing the amount of feed consumed.
Experiments with larger sized fermenters resulted in a commercial design for a thermophilic waste treatment system with a total capacity of six thousand gallons.
Finally, preliminary trials utilizing lignocellulose as a substrate for thermophilic bacteria indicated that these bateria are able to utilize cellulose as a nutrient source. / Land and Food Systems, Faculty of / Graduate
|
129 |
Transporting and Disposing of Wastewater from North Dakota Oil ProducersYin, Qingqing January 2012 (has links)
North Dakota’s oil boom is aided by a new technology, fracking. But this technology implies large amounts of wastewater. The methods of dealing with this wastewater are now an issue. Currently, North Dakota locks it into deep injection wells in the Bakken formation. With the development of membrane technologies to treat wastewater, it may be feasible to treat the wastewater and reuse it.
This study uses a mathematical programming model to minimize the total cost of dealing with wastewater using three methods - deep well injection, on-site treatment, and off-site treatment. The model results show it is cost-effective to use on-site and large capacity off-site treatment to treat the 20% of the wastewater that flows back within the first 30-60 days after a well is drilled.
|
130 |
An in situ assessment of the impact of chlorinated wastewater on the macroinvertebrates inhabiting the upper hyporheic zone /Jones, Daniel S. 01 January 1991 (has links) (PDF)
No description available.
|
Page generated in 0.1187 seconds