• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of HFR1 in Shade Avoidance and Phytochrome A Signaling

Gurses, Serdar Abidin 14 January 2004 (has links)
Phytochromes are the photoreceptors mainly responsible for the detection of red and far-red (FR) light and the following responses. HFR1 is a basic helix-loop-helix type putative transcription factor involved in Phytochrome A signaling pathway. First we look at the early phenotype of mutant seedlings lacking a functional HFR1 gene and we show that auxin is involved in the increased hypocotyl phenotype of these seedlings. Northern blots and RT-PCRs showed that ATHB-2, a gene involved in shade avoidance is regulated by HFR1 under FR light. Microarray experiments were performed to find the genes that are early targets of regulation by HFR1.
2

Intra-organ regulation of gene expression responses for the shade avoidance / 避陰応答における遺伝子発現応答の器官内調節

Kim, Sujung 23 May 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21250号 / 理博第4420号 / 新制||理||1634(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 長谷 あきら, 教授 鹿内 利治, 准教授 小山 時隆 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
3

INVESTIGATING THE FUNCTIONAL ROLE OF MED5 AND CDK8 IN ARABIDOPSIS MEDIATOR COMPLEX

Xiangying Mao (6714896) 02 August 2019 (has links)
<p>The Mediator (Med) complex comprises about 30 subunits and is a transcriptional co-regulator in eukaryotic systems. The core Mediator complex, consisting of the head, middle and tail modules, functions as a bridge between transcription factors and basal transcription machinery, whereas the CDK8 kinase module can attenuate Mediator’s ability to function as either a co-activator or co-repressor. Many Arabidopsis Mediator subunit has been functionally characterized, which reveals critical roles of Mediator in many aspects of plant growth and development, responses to biotic and abiotic stimuli, and metabolic homeostasis. Traditional genetic and biochemical approaches laid the foundation for our understanding of Mediator function, but recent transcriptomic and metabolomic studies have provided deeper insights into how specific subunits cooperate in the regulation of plant metabolism. In Chapter 1, we highlight recent developments in the investigation of Mediator and plant metabolism, with emphasis on the large-scale biology studies of <i>med</i> mutants.</p> <p>We previously found that MED5, an Arabidopsis Mediator tail subunit, is required for maintaining phenylpropanoid homeostasis. A semi-dominant mutation (<i>reduced epidermal fluorescence 4-3</i>, <i>ref4-3</i>) that causes a single amino acid substitution in MED5b functions as a strong suppressor of the pathway, leading to <a>decreased soluble phenylpropanoid accumulation, reduced lignin content and dwarfism</a>. In contrast, loss of MED5a and MED5b (<i>med5</i>) results in increased levels of phenylpropanoids. In Chapter 2, we present our finding that <i>ref4-3</i> requires CDK8, a Mediator kinase module subunit, to repress plant growth even though the repression of phenylpropanoid metabolism in <i>ref4-3 </i>is CDK8-independent. Transcriptome profiling revealed that salicylic acid (SA) biosynthesis genes are up-regulated in a CDK8-dependent manner in <i>ref4-3,</i> resulting in hyper-accumulation of SA and up-regulation of SA response genes. Both growth repression and hyper-accumulation of SA in <i>ref4-3</i> require CDK8 with intact kinase activity, but these SA phenotypes are not connected with dwarfing. In contrast, mRNA-sequencing (RNA-seq) analysis revealed the up-regulation of a DNA J protein-encoding gene in <i>ref4-3</i>, the elimination of which partially suppresses dwarfing. Together, our study reveals genetic interactions between Mediator tail and kinase module subunits and enhances our understanding of dwarfing in phenylpropanoid pathway mutants.</p> <p>In Chapter 3, we characterize other phenotypes of <i>med5</i> and <i>ref4-3</i>, and find that in addition to the up-regulated phenylpropanoid metabolism, <i>med5</i> show other interesting phenotypes including hypocotyl and petiole elongation as well as accelerated flowering, all of which are known collectively as the shade avoidance syndrome (SAS), suggesting that MED5 antagonize shade avoidance in wild-type plants. In contrast, the constitutive <i>ref4-3 </i>mutant protein inhibits the process, and the stunted growth of <i>ref4-3 </i>mutants is substantially alleviated by the light treatment that triggers SAS. Moreover, <i>ref4-3</i> mimics the loss-of-function <i>med5</i> mutants in maintaining abscisic acid (ABA) levels under both normal and drought growth conditions. The phenotypic characterization of <i>med5</i> mutants extend our understanding of the role of Mediator in SAS and ABA signaling, providing further insight into the physiological and metabolic responses that require MED5.</p> <p>In Chapter 4, we explore the function of MED5 and CDK8 in gene expression regulation by investigating the effect of mutations in Mediator including <i>med5</i>, <i>ref4-3</i>, <i>cdk8-1</i> and <i>ref4-3 cdk8-1</i> on genome-wide Pol II distribution. We find that loss of MED5 results in loss of Pol II occupancy at many target genes. In contrast, many genes show enriched Pol II levels in <i>ref4-3</i>, some of which overlap with those showing reduced Pol II occupancy in <i>med5</i>. In addition, Pol II occupancy is significantly reduced when CDK8 is disrupted in <i>ref4-3</i>. Our results help to narrow down the direct gene targets of MED5 and identify genes that may be closely related to the growth deficiency observed in <i>ref4-3</i> plants, providing a critical foundation to elucidate the molecular function of Mediator in transcription regulation.</p>
4

Climate Change Affects Leaf Morphology: Investigating Mechanism and Variation Across Species

Thomas, Michael D. 11 July 2022 (has links)
No description available.

Page generated in 0.0545 seconds