• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 24
  • 18
  • 14
  • 10
  • 7
  • 5
  • 2
  • 2
  • 2
  • Tagged with
  • 159
  • 159
  • 57
  • 48
  • 47
  • 43
  • 35
  • 25
  • 22
  • 22
  • 20
  • 19
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Morphing-Based Shape Optimization in Computational Fluid Dynamics

ROUSSEAU, Yannick, MEN'SHOV, Igor, NAKAMURA, Yoshiaki 04 May 2007 (has links)
No description available.
12

固有振動数制約付き Mindlin 板・シェル構造の重量最小形状設計

下田, 昌利, SHIMODA, Masatoshi, 辻, 二郎, TSUJI, Jiro, 神田, 康宏, KANDA, Yasuhiro, 畔上, 秀幸, AZEGAMI, Hideyuki 09 1900 (has links)
No description available.
13

リンク機構における形状最適化問題の定式化

AZEGAMI, Hideyuki, UMEMURA, Kimihiro, 畔上, 秀幸, 梅村, 公博 11 1900 (has links)
No description available.
14

Computational Design and Evaluation Methods for Empowering Non-Experts in Digital Fabrication

Ulu, Nurcan Gecer 01 May 2018 (has links)
Despite the increasing availability of personal fabrication hardware and services, the true potential of digital fabrication remains unrealized due to lack of computational techniques that can support 3D shape design by nonexperts. This work develops computational methods that address two key aspects of content creation:(1) Function-driven design synthesis, (2) Design assessment. For design synthesis, a generative shape modeling algorithm that facilitates automatic geometry synthesis and user-driven modification for nonexperts is introduced. A critical observation that arises from this study is that the most geometrical specifications are dictated by functional requirements. To support design by high-level functional prescriptions, a physics based shape optimization method for compliant coupling behavior design has been developed. In line with this idea, producing complex 3D surfaces from flat 2D sheets by exploiting the concept of buckling beams has also been explored. Effective design assessment, the second key aspect, becomes critical for problems in which computational solutions do not exist. For these problems, this work proposes crowdsourcing as a way to empower non-experts in esoteric design domains that traditionally require expertise and specialized knowledge.
15

Optimalizace tvaru mazací mezery hydrodynamického ložiska / Lubricant Gap Shape Optimization of the Hydrodynamic Thrust Bearing

Ochulo, Ikechi January 2021 (has links)
The objective of this Master's thesis is to find, using genetic algorithm (GA), an optimal profile for lubricating gap of a thrust bearing of a turbocharger. Compared to the analytical profile, the optimal profile is expected to have minimized friction for an equivalent load capacity. Friction minimization is one way to increase the efficiency of the thrust bearing; it reduces the friction losses in the bearing. An initial problem was given: a thrust bearing with Load capacity 1000 N, inner and outer radii of 30mm and 60mm respectively, rotor speed of 45000 rpm and angle of running surface of $0.5^0$. Lubricant properties were also provided for the initial problem: oil density of $ 840 kg/m^3$, dynamic viscosity $(\eta)$ of 0.01 Pa.s With this data, the numerical solution of the Reynolds equation was computed using MATLAB. To obtain more information, the minimum lubricating gap thickness was also computed using MATLAB. With this information, the shape of the analytical profile, and its characteristics were found. The analytical profile was then used a guide to create a general profile. The general profile thus obtained is then optimized using GA. The characteristics of the generated profile is then computed and compared to that of the analytical profile.
16

Optimalizace potrubních tvarovek / Optimization of an Adapting Pipes

Svozil, Jan January 2012 (has links)
Adapting pipes are a significant part of any pipe-line network and they are the sources of substantial hydraulic losses. They are designed for a manufacturing simplicity, regardless of flow. This paper concerns with lowering of hydraulic losses of adapting pipes by means of the shape optimization. Several methods of a mathematical optimization are tested and due to the complexity of the task and the need of the computational distribution among several computers, the gradient based algorithm is used. These methods loop together with a CFD software then automatically explore the design space. Several optimizations of diffusers with different opening angles, shape parameterizations and boundary conditions are made for the better insight on hydraulic losses. In three chapters there is description of development of parametric description of bend by means of Bezier surfaces. At the end optimum shape is found with hydraulic losses were decreased about 22%, which was not validated by experiment. In the final chapter is application of developed software on the shape optimization of Kaplan draft tube.
17

SHAPE OPTIMIZATION OF NONLINEAR STRUCTURES UNDER FATIGUE LOADING

LIN, JEEN 11 October 2001 (has links)
No description available.
18

Shape Optimization of Low-Profile UWB Body-of-Revolution Monopole Antennas

Zhao, Jing 27 September 2011 (has links)
No description available.
19

Integrated Multidisciplinary Design Optimization Using Discrete Sensitivity Analysis for Geometrically Complex Aeroelastic Configurations

Newman, James Charles III 06 October 1997 (has links)
The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited fro geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In two-dimensions, an initially symmetric NACA-0012 airfoil and a high-lift multi-element airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in additions, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interactions compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented. / Ph. D.
20

Local Continuum Sensitivity Method for Shape Design Derivatives Using Spatial Gradient Reconstruction

Cross, David Michael 06 June 2014 (has links)
Novel aircraft configurations tend to be sized by physical phenomena that are largely neglected during conventional fixed wing aircraft design. High-fidelity fluid-structure interaction that accurately models geometric nonlinerity during a transient aeroelastic gust response is critical for sizing the aircraft configuration early in the design process. The primary motivation of this research is to develop a continuum shape sensitivity method that can support gradient-based design optimization of practical and multidisciplinary high-fidelity analyses. A local continuum sensitivity analysis (CSA) that utilizes spatial gradient reconstruction (SGR) and avoids mesh sensitivities is presented for shape design derivative calculations. Current design sensitivity analysis (DSA) methods have shortcomings regarding accuracy, efficiency, and ease of implementation. The local CSA method with SGR is a nonintrusive and element agnostic method that can be used with black box analysis tools, making it relatively easy to implement. Furthermore, it overcomes many of the accuracy issues documented in the current literature. The method is developed to compute design derivatives for a variety of applications, including linear and nonlinear static beam bending, linear and nonlinear transient gust analysis of a 2-D beam structure, linear and nonlinear static bending of rectangular plates, linear and nonlinear static bending of a beam-stiffened plate, and two-dimensional potential flow. The analyses are conducted using general purpose codes. For each example the design derivatives are validated with either analytic or finite difference solutions and practical numerical and modeling considerations are discussed. The local continuum shape sensitivity method with spatial gradient reconstruction is an accurate analytic design sensitivity method that is amenable to general purpose codes and black box tools. / Ph. D.

Page generated in 0.1218 seconds