• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite Element Analysis during Shape Rolling Processes

Sheu, Yann-Jong 19 July 2000 (has links)
Finite Element Analysis during Shape Rolling Processes ABSTRACT This paper used three-dimensional finite element code-deform to analyze the deformation behavior of material at the rolling-gap during shape rolling of T-profiled and H-profiled sheet. The rigid-plastic model was used. The rolls are assumed to be rigid body and the change of temperate during rolling is ignored. In T-profiled sheet rolling, 1-pass and 2-pass rolling were included. There-dimensional deformation of the sheet was analyzed and the filling ratio at the roll gap, the spread of the sheet, rolling force, the curvature of products were predicted etc. Comparison between analytical and experimental results was made to verify the suitability of the DEFORM software. In H-profiled sheet rolling , the stress, strain, velocity distribution of material was investigated and the filling ratio was analyzed at the H shape flange during the different reductions. These results can offer knowledge for the design of actual H-profiled sheet rolling.
2

Optimization of shape rolling processes using finite element analysis and experimental design methodology

Osio, Ignacio G. January 1992 (has links)
No description available.
3

An analysis, design, and improvement methodology for shape rolling processes and procedures for the compensation of dies

Belinski, Robert A. January 1999 (has links)
No description available.
4

Numerical simulation of shape rolling

Riljak, Stanislav January 2006 (has links)
In the first part of this thesis, the FE program MSC.Marc is applied for coupled thermomechanical simulations of wire-rod rolling. In order to predict material behaviour of an AISI 302 stainless steel at high strain rates generated during wire-rod rolling, a material model based on dislocation density is applied. Then, the evolution of temperature, strain rate and flow stress is predicted in the first four rolling passes of a wire block. In the second part of the thesis, an alternative approach to simulation of shape rolling is evaluated. The approach is applied in order to save the computational time in cases where many shape-rolling passes are to be simulated. The approach is a combination of the slab method and a 2D FEM with a generalized plane-strain formulation. A number of various isothermal shape-rolling passes are simulated applying the simplified approach. The simulations are carried out using an in-house 2D FE code implemented in Matlab. The results are compared to fully 3D FE analyses. The comparison shows that the simplified approach can predict roll forces and roll torques with a fair accuracy, but the predicted area reductions are a bit underestimated. The reasons for the deviations between the simplified approach and the 3D FEM are discussed. / QC 20101123
5

Numerical simulation of shape rolling

Riljak, Stanislav January 2006 (has links)
<p>In the first part of this thesis, the FE program MSC.Marc is applied for coupled thermomechanical simulations of wire-rod rolling. In order to predict material behaviour of an AISI 302 stainless steel at high strain rates generated during wire-rod rolling, a material model based on dislocation density is applied. Then, the evolution of temperature, strain rate and flow stress is predicted in the first four rolling passes of a wire block.</p><p>In the second part of the thesis, an alternative approach to simulation of shape rolling is evaluated. The approach is applied in order to save the computational time in cases where many shape-rolling passes are to be simulated. The approach is a combination of the slab method and a 2D FEM with a generalized plane-strain formulation. A number of various isothermal shape-rolling passes are simulated applying the simplified approach. The simulations are carried out using an in-house 2D FE code implemented in Matlab. The results are compared to fully 3D FE analyses. The comparison shows that the simplified approach can predict roll forces and roll torques with a fair accuracy, but the predicted area reductions are a bit underestimated. The reasons for the deviations between the simplified approach and the 3D FEM are discussed.</p>
6

Evolution of artificial defects during shape rolling

Filipovic, Mirjana January 2007 (has links)
<p>Very often defects are present in rolled products. For wire rods, defects are very deleterious since the wire rods are generally used directly in various applications. For this reason, the market nowadays requires wire rods to be completely defect-free. Any wire with defects must be rejected as scrap which is very costly for the production mill. Thus, it is very important to study the formation and evolution of defects during wire rod rolling in order to better understand and minimize the problem, at the same time improving quality of the wire rods and reducing production costs.</p><p>The present work is focused on the evolution of artificial defects during rolling. Longitudinal surface defects are studied during shape rolling of an AISI M2 high speed steel and a longitudinal central inner defect is studied in an AISI 304L austenitic stainless steel during ultra-high-speed wire rod rolling. Experimental studies are carried out by rolling short rods prepared with arteficial defects. The evolution of the defects is characterised and compared to numerical analyses. The comparison shows that surface defects generally reduce quicker in the experiments than predicted by the simulations whereas a good agreement is generally obtained for the central defect.</p>
7

Evolution of artificial defects during shape rolling

Mirjana, Filipovic January 2007 (has links)
Very often defects are present in rolled products. For wire rods, defects are very deleterious since the wire rods are generally used directly in various applications. For this reason, the market nowadays requires wire rods to be completely defect-free. Any wire with defects must be rejected as scrap which is very costly for the production mill. Thus, it is very important to study the formation and evolution of defects during wire rod rolling in order to better understand and minimize the problem, at the same time improving quality of the wire rods and reducing production costs. The present work is focused on the evolution of artificial defects during rolling. Longitudinal surface defects are studied during shape rolling of an AISI M2 high speed steel and a longitudinal central inner defect is studied in an AISI 304L austenitic stainless steel during ultra-high-speed wire rod rolling. Experimental studies are carried out by rolling short rods prepared with arteficial defects. The evolution of the defects is characterised and compared to numerical analyses. The comparison shows that surface defects generally reduce quicker in the experiments than predicted by the simulations whereas a good agreement is generally obtained for the central defect.
8

Evolution of artificial defects during shape rolling

Filipovic, Mirjana January 2007 (has links)
Very often defects are present in rolled products. For wire rods, defects are very deleterious since the wire rods are generally used directly in various applications. For this reason, the market nowadays requires wire rods to be completely defect-free. Any wire with defects must be rejected as scrap which is very costly for the production mill. Thus, it is very important to study the formation and evolution of defects during wire rod rolling in order to better understand and minimize the problem, at the same time improving quality of the wire rods and reducing production costs. The present work is focused on the evolution of artificial defects during rolling. Longitudinal surface defects are studied during shape rolling of an AISI M2 high speed steel and a longitudinal central inner defect is studied in an AISI 304L austenitic stainless steel during ultra-high-speed wire rod rolling. Experimental studies are carried out by rolling short rods prepared with arteficial defects. The evolution of the defects is characterised and compared to numerical analyses. The comparison shows that surface defects generally reduce quicker in the experiments than predicted by the simulations whereas a good agreement is generally obtained for the central defect. / QC 20101105

Page generated in 0.0617 seconds