• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1536
  • 602
  • 221
  • 185
  • 120
  • 66
  • 40
  • 37
  • 36
  • 36
  • 36
  • 36
  • 36
  • 32
  • 30
  • Tagged with
  • 3593
  • 721
  • 619
  • 458
  • 453
  • 436
  • 413
  • 362
  • 283
  • 264
  • 230
  • 230
  • 229
  • 218
  • 217
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Effect of FRP Anchors on the FRP Rehabilitation of Shear Critical RC Beams and Flexure Critical RC Slabs

Baggio, Daniel Frank 20 February 2013 (has links)
The use of fiber-reinforced polymer (FRP) composites as a repair and strengthening material for reinforced concrete (RC) members has increased over the past twenty years. The tendency for FRP sheets to debond at loads below their ultimate capacity has prompted researchers to investigate various approaches and designs to increase the efficiency of FRP strengthening systems. Various anchors, wrapping techniques and clamps have been explored to postpone and/or delay the debonding process which results in premature failure. FRP anchors are of particular interest because they can be selected to have the same material properties as the FRP sheets that are installed for strengthening or repair of the RC member and can be done so using the same adhesives and installation techniques. This research study aimed to investigate the effectiveness of using commercially manufactured FRP anchors to secure FRP sheets installed to strengthen and repair RC beams in shear and RC slabs in flexure. Twenty one shear critical RC beams were strengthened in shear with u-wrapped FRP sheets and FRP anchors. Eight RC one-way slabs were strengthened in flexure with FRP sheets and FRP anchors. The test variables include the type of FRP sheets (GFRP,CFRP), type of FRP anchors (CFRP, GFRP) and the strengthening configuration. The test results of the shear critical RC beams revealed that the installation of commercially manufactured FRP anchors to secure externally applied u-wrap FRP sheets improved the shear behaviour of the strengthened beam. The installation of FRP anchors to secure u-wrapped FRP sheets provided an average 15% increase in the shear strength over companion unanchored beams and improved the ductility of failure experienced with the typical shear failure in beams. The use of FRP anchors allowed the FRP sheets to develop their tensile capacity. Premature failure by FRP debonding was eradicated with the presence of FRP anchors and the failure modes of the strengthened beams with FRP anchors was altered when compared to the companion unanchored beam. Additionally, as the width of a u-wrapped FRP sheet was increased; larger increases in strength were obtained when FRP anchors were used. The test results of the flexure critical RC slabs revealed that the installation of commercially manufactured FRP anchors to secure externally applied u-wrapped FRP sheets improved the behaviour of strengthened slabs. Installation of FRP anchors to secure flexural FRP sheets provided an average 17% increase in strength over companion unanchored beams. The use of FRP anchors allowed the FRP sheets to develop their full tensile strength. Premature failure by CFRP debonding was not eliminated with the presence of FRP anchors; rather the critical failure zone was shifted from the bottom soffit of the slab to the concrete/steel rebar interface. The failure modes of slabs with FRP anchors were altered for all specimens when compared to the companion unanchored slab. The effective strain in the FRP sheet was predicted and compared with the experimental results. The efficiency of FRP anchors defined as the ratio of effective strain in the FRP sheet with and without anchors was related to the increase in strength in beams and slabs. A good correlation was established between the FRP anchor efficiency and the increase in strength. A step-by-step FRP anchor installation procedure was developed and a model to predict the number of FRP anchors required to secure a FRP sheet was proposed. This is the most comprehensive examination of beams and slabs strengthened with FRP sheets and FRP anchors conducted to date. This study provides an engineer with basic understanding of the mechanics, behaviour and failure modes of beams and slabs strengthened with FRP sheets and anchors.
362

Consequences of using Eurocode 5 for design of steel-timber connections

Debarbouille, Quentin January 2011 (has links)
Timber construction has increased in popularity in different countries in Europe thanks to a new material apparition and environmental stakes. In order to construct a timber structure we use different types of connections. The design of connections is complex since it is influenced by many different factors. However, the connection is the weak part of the structure and has high risk of collapse. Therefore the connection often determines the capacity of the structure.In 1975 the commission of the European Community decided to harmonize of technicalities and rules of design in the field of construction. The aim is to increase the competition between companies and simplify the trade of products and services within the European Union. The regulation for timber structures is Eurocode 5 (EC5).This study investigates how the EC5 can influence the design of a connection with a single shear plane for a steel-timber connection with nails or screws. This study is based on the comparison between the connection properties obtained using the EC5 and those recommended in a brochure from one of the large glulam manufacturers in Sweden based on the Swedish regulations.The outcome is that the new regulation has a strong impact on the design of the steel plates. The requirement in minimum spacing imposes a specific dimension and position of the fasteners. Moreover, the capacity of the connection is influenced by the distance between the fasteners parallel to the grain, which determines the effective number of fasteners involved in the connection.
363

Development of a Shear Connection for a Portable Composite Bridge

Bowser, Matthew George January 2010 (has links)
Bridges consisting of steel plate girders and composite concrete deck slabs are common throughout North America. For a typical highway application, these composite bridges are constructed with a cast-in-place concrete deck; however, some composite bridge designs utilize precast concrete deck panels. For example, bridges built on temporary access roads which service resource industries throughout Western Canada often employ composite bridges that consist of steel plate girders and precast concrete deck panels. For spans between 18- to 36 metres, permanent bridges currently present the best economy; although, portable structures would be preferred on these temporary roads so that the bridge could be relocated after the road is decommissioned. This study proposes a shear connection between steel plate girders and precast concrete deck panels, which allows fastening, and unfastening, of these two components enabling a portable composite bridge. In total, ten connection concepts were developed during this study and a multi-criteria assessment was performed to evaluate each concept respectively. Based on the outcome of this multi-criteria assessment, and subsequent sensitivity analysis, a preferred connection was established and a finite element model was developed for the analysis of composite bridge girders. For the initial development of the finite element model, the test set up and experimental findings of a test program by other researchers was employed so that the finite element analysis results could be compared to those reported from a physical experiment. Following this initial finite element analysis, full scale composite bridge girders were modelled so that the influence of the proposed shear connection on the behaviour of a composite girder could be studied. The model was verified for its ability to capture the possible effects of flange buckling, web buckling, and lateral torsional buckling of the steel plate girder. It was then confirmed that these local responses do not influence the performance of the proposed portable composite bridge system. A parametric study was also performed in which the effect of shear connection stiffness and spacing on the behaviour of the composite girder was investigated. This parametric study allowed the sensitivity of the proposed connection to variations in these two parameters to be assessed and also allowed preliminary study of the performance of composite girders with alternative shear connection designs.
364

Behaviour of Shear Critical RC Beams with Corroded Longitudinal Steel Reinforcement

Azam, Rizwan January 2010 (has links)
This thesis discusses the results of an experimental program designed to investigate the effect of corrosion on the behaviour of shear critical reinforced concrete (RC) beams. The results of twenty RC beams (ten deep beams and ten slender beams) are described and discussed. The test variables included: corrosion level (2.5%, 5% and 7.5%) and existence of stirrups (beams without stirrups and beams with stirrups). The feasibility of repairing the corroded shear critical RC beams with CFRP laminates was also investigated. Sixteen specimens were corroded using an accelerated corrosion technique whereas four specimens acted as control un-corroded. Following the corrosion phase, all specimens were tested to failure under three point bending. Test results revealed that the corrosion does not adversely affect the behaviour of shear critical RC beams rather it improves their behaviour. It was found that corrosion changed the failure mode of the corroded beams. The control un-corroded deep beams (beams with and without stirrups) failed in shear-compression failure whereas corroded deep beams (beams with and without stirrups) failed by splitting of the compression strut. The control un-corroded slender beams (beams with and without stirrups) failed in diagonal tension failure whereas the corroded slender beams failed in anchorage failure (beams without stirrups) and flexural failure (beams with stirrups). The analysis of the results showed that corrosion changed the load transfer mechanism and the change of failure mode was associated with the mechanism. The load transfer mechanism changed from a combination of beam and arch action in the control un-corroded deep beams to pure arch action in the corroded deep beams. The load transfer mechanism changed from pure beam action in the control un-corroded slender beams to pure arch action in the corroded slender beams. Two strut and tie models are proposed: one for corroded deep beams and one for corroded slender beams. The ultimate loads of the corroded beams were predicted using these struts and tie models and compared with the experimental results. A very good correlation was found between predicted and experimental results.
365

The deformational history of the Black Bay structure near Uranium City, Northern Saskatchewan

Bergeron, Julie 28 July 2009 (has links)
The Black Bay Shear Zone, northwestern Saskatchewan, lies within the Rae Province of the Canadian Shield. It is one of several major, northeast trending, steeply dipping shear zones that were active during the Paleoproterozoic Trans-­Hudson or Thelon Orogenies. For part of its exposed length of approximately 50 km it separates Archean supracrustal gneisses of the Tazin Group to the northwest, from the unconformably overlying Paleoproterozoic, red-bed sequence of the Martin Group to the southeast. Deformation fabrics along the Black Bay Shear Zone indicate the sequential development of early ductile to late brittle episodes of movement. The early ductile episode (D<sub><font size=1>1</font></sub>, pre-Martin Gp) is characterized by a 1 km-wide mylonite belt in the Tazin gneisses, with mylonitic lamination (C-fabric), dextral ä-asymmetric winged porphyroclasts, stretch lineation (L<ub><font size=1>1</font></sub>) and rare sheath folds. This was followed by a ductile to brittle transition (D<sub><font size=1>2</font></sub>, also pre-Martin Gp) characterized by small asymmetric folds in C, and small post-C compressional and extensional shear bands (SB) ranging from thin ductile shear zones to brittle fractures commonly vein filled. The late brittle phase (D<sub><font size=1>3</font></sub>, post-Martin Gp), to which uranium vein mineralization is related, included the formation of a major brittle fault zone along the southeastern side of the mylonitic shear zone, and several sets of vein filled joints. Movement directions during D<sub><font size=1>1</font></sub> to D<sub><font size=1>3</font></sub> are reflected by various shear sense indicators. The D<sub><font size=1>1</font></sub> dextral ä-asymmetrical winged porphyroclasts, combined with the gently NE and SW plunging L<sub><font size=1>1</font></sub>, stretch lineation, indicate sub-horizontal dextral displacement during the ductile phase of deformation. Predominantly NE-verging and steeply dipping SW plunging minor D<sub><font size=1>2</font></sub> folds, along with the predominantly dextral-verging, post-C shear bands, indicate that oblique dextral SE-side-up slip occurred during the ductile to brittle transition. Brittle movement (D<sub><font size=1>3</font></sub>)resulted in the preservation of an approximately 8-km thick succession of Martin Group on the SE-side of the fault, indicating a SE-side-down vertical throw of at least 8 km. The local presence of poorly preserved, down-dip slickenlineations suggests that at least some of this movement was dip slip. Time constraints on deformation are poor, tentatively all of the Black Bay Structure deformational history took place between 2300 Ma and 1700 Ma.
366

Durability of Polymer Composite Materials

Liu, Liu 13 October 2006 (has links)
The purpose of this research is to examine structural durability of advanced composite materials under critical loading conditions, e.g., combined thermal and mechanical loading and shear fatigue loading. A thermal buckling model of a burnt column, either axially restrained or under an axial applied force was developed. It was predicted that for a column exposed to the high heat flux under simultaneous constant compressive load, the response of the column is the same as that of an imperfection column; the instability of the burnt column happens. Based on the simplified theoretical prediction, the post-fire compressive behavior of fiberglass reinforced vinyl-ester composite columns, which have been exposed to high heat flux for a certain time was investigated experimentally, the post-fire compressive strength, modulus and failure mode were determined. The integrity of the same column under constant compressive mechanical loading combined with heat flux exposure was examined using a specially designed mechanical loading fixture that mounted directly below a cone calorimeter. All specimens in the experiments exhibited compressive instability. The experimental results show a thermal bending moment exists and has a significant influence on the structural behavior, which verified the thermal buckling model. The trend of response between the deflection of the column and exposure time is similar to that predicted by the model. A new apparatus was developed to study the monotonic shear and cyclic-shear behavior of sandwich structures. Proof-of-concept experiments were performed using PVC foam core polymeric sandwich materials. Shear failure occurred by the extension of cracks parallel to the face-sheet/core interface, the shear modulus degraded with the growth of fatigue damage. Finite element analysis was conducted to determine stress distribution in the proposed specimen geometry used in the new technique. Details for a novel apparatus used for the fatigue testing of thin films and face sheets are also provided.
367

The Growth Mechanism of Inclined AlN Films and Fabrication of Dual Mode Solidly Mounted Resonators

Chen, Cheng-ting 02 August 2010 (has links)
The 1/4£f dual-mode resonators made from c-axis-oriented aluminum nitride films grown on different conduction material have been studied in this thesis. The RF/DC sputter system is used to grow on layers of reflector. During the porcess, 3.5 pairs of Bragg reflector alternating with W and SiO2 are composed by Si substractor. To achieve 0.999 reflective rate, fabrication parameters are adjusted to make W films become £\-phase structurre. On the other hand, piezoelectric layers as well as reflective layers that using reactive RF magnetron sputtering system and means of off-axis are combined to deposite optimal resonators of shear mode quality factor (Q) resonatros. While changing the substract and target distance between various bottom electrode materials, including Si, W/Si, and Mo/Si could deposit AlN with various c-axis tilting angle which resulted in stimulating longitudinal and shear acoustic waves. Futhermore, the finding is used to discuss the growth mechanism of inclined AlN by TEM. The analysis of various distances of AlN films shows that column inclining angle and XRD-Rocking Curve £s will increase with distance. The quality of shear mode would be better when column and £s are highly shifed. About the influence on AlN deposites, AlN/Si was grown away from the center by 6 cm. AlN/Si column inclining angle is about 20 degree, and RMS could reach 2.63nm beneath. Uner AlN/W/Si, column incling angle is about 30 degree, and £s shift angle 4.14 degree, the shear mode quality factor of freaquency response is obtained to 262. Under AlN/Mo/W/Si, column incling angle would be 25.4 degree, and XRD are better-choosed c-aixsm, £s tilting angle shifs 6.72 degree, and the shear mode quality factor is obtained to 290. Film intersurface appears bigger misfit by TEM to obtain better shear mode.
368

The deformation behavior of ultrafine-grained AZ31 Mg alloy with varied compression directions

Chou, Ying-Wen 24 August 2010 (has links)
none
369

Reflective cracking of shear keys in multi-beam bridges

Sharpe, Graeme Peter 02 June 2009 (has links)
Multi-beam bridges made from precast concrete box girders are one of the most common bridge types used in the United States. One problem that affects these bridges is the development of longitudinal or reflective cracks on the road surface because of failure of the shear keys. Some states have attempted to correct this problem by redesigning the shear key or adding post-tensioning, but the problem persists in many new bridges. The purpose of this study is to investigate why these shear key failures are occurring. This project studies two types of box girder designs, the common Precast/Prestressed Concrete Institute (PCI) box girder bridges and the Texas Department of Tranportation (TxDOT) box girder bridge. In the past, reflective cracking has occurred in bridges of both types. The analysis procedure involves finite element analyses of bridge models with realistic support and loading conditions, and comparing the PCI and TxDOT bridges. The results indicate that both PCI and TxDOT box girder have sufficient strength to resist cracking from vehicular loads, but uneven temperature changes and shrinkage strains cause high tensile stresses in the shear key regions and lead to reflective cracking. The analyses showed the highest stresses were often times near the supports, rather than at midspan. Past studies have proposed using larger composite deck slabs, transverse posttensioning, or full-depth shear keys to prevent shear key failure. Composite slabs were the most effective way to reduce high stresses in shear keys, and were effective for all loading cases considered. Post-tensioning and full-depth keys also showed a reduction in shear key stresses, but were less effective.
370

The tensile properties of sub-micron Al

Hung, Pei-Ching 29 June 2004 (has links)
In this experimental, we use ECAE with route BC to produce the ultrafine-grain Al and use different annealing temperature to get grain size at 0.4

Page generated in 0.0435 seconds