• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1536
  • 602
  • 221
  • 185
  • 120
  • 66
  • 40
  • 37
  • 36
  • 36
  • 36
  • 36
  • 36
  • 32
  • 30
  • Tagged with
  • 3593
  • 721
  • 619
  • 458
  • 453
  • 436
  • 413
  • 362
  • 283
  • 264
  • 230
  • 230
  • 229
  • 218
  • 217
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

A computational study of mixing in a liquid jet impinging on an immiscible liquid layer

Kandil, Sherif M. January 2001 (has links)
Thesis (M.S.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains xii, 113 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 95-98).
382

Nonlinear behaviour of reinforced concrete coupling beams /

Zhao, Zuozhou. January 2001 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 320-332).
383

Elastic and elasto-plastic analysis of shear wall and core wall structures /

Kuang, Jun-shang. January 1988 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1989.
384

Influence of strength variability on the safety of slopes in cohesive-frictional soils.

Law, Kum-tim. January 1971 (has links)
Thesis--M. Sc.(Eng.), University of Hong Kong. / Mimeographed.
385

Laboratory investigation of electrostatic ion waves modified by parallel-ion-velocity shear

Teodorescu, Catalin. January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xiv, 215 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 107-113).
386

Anchorage-controlled shear capacity of prestressed concrete bridge girders

Langefeld, David Philip 25 June 2012 (has links)
As part of the ongoing research on shear at the Phil M. Ferguson Structural Engineering Laboratory (FSEL) located at The University of Texas at Austin, the anchorage controlled shear capacity of prestressed concrete bridge girders was in this research studied in two distinct ways, experimentally and analytically. The results of this research are an important step towards improving understanding of strand anchorage related issues. For the experimental program, two full-scale Tx46 prestressed concrete bridge girders were fabricated at FSEL. The Tx46 girders were topped with a concrete, composite deck. Both ends of the two girders were instrumented and tested. For the analytical program, a new Anchorage Evaluation Database (AEDB) was developed, by filtering and expanding the University of Texas Prestressed Concrete Shear Database (UTPCSDB), and then evaluated. The AEDB contained 72 shear tests, of which 25 were anchorage failures and 47 were shear failures. The results and analysis from the experimental and analytical programs generated the following three main conclusions: (1) A reasonable percentage of debonding in Tx Girders does not have a marked impact on girder shear capacity calculated using the 2010 AASHTO LRFD General Procedure. (2) The AASHTO anchorage equation is conservative but not accurate. In other words, this equation cannot be used to accurately differentiate between a shear failure and an anchorage failure. In regards to conservativeness, anchorage failures in AASHTO-type girders may lead to unconservative results with respect to the 2010 AASHTO LRFD General Procedure. (3) The 2010 AASHTO anchorage resistance model and its corresponding equation do not apply to Tx Girders. Because of the Tx Girders' wider bottom flange, cracks do not propagate across the strands as they do in AASHTO-type girders. This fact yields overly conservative results for Tx Girders with respect to AASHTO Equation 5.8.3.5-1. In summary, this research uncovered the short-sided nature of the AASHTO anchorage design method. Given its short-comings, there is an obvious need for a validated, comprehensive, and rational approach to anchorage design that considers strength and serviceability. To appropriately develop this method, additional full-scale experimental testing is needed to expand the AEDB, as currently there are not enough tests to distinguish major, general trends and variables. Any future additional research would be expected to further validate and expand the significant findings that this research has produced and so take the next step toward safer, more-efficient bridge designs. / text
387

Characteristics of undrained shear strength in shallow soils in deep water Gulf of Mexico

West, James William 05 November 2013 (has links)
Shallow foundations are used when designing subsea structures on the seafloor of deep water Gulf of Mexico. In order to design these subsea shallow foundations it is important to understand the behavior of the undrained shear strength of the shallow soils (i.e. upper ten to twenty feet of soil). The objective of this research is to analyze a database of soil data from deep water Gulf of Mexico originally produced by Cheon (2011) with a focus on shallow soils. The purpose of this analysis is to gain a better understanding of the soil and how it will be usable with regards to shallow foundation design. The methodology of this analysis involves studying raw data collected from different measurements taken to aid in the creation of design profiles of undrained shear strength versus depth. Within the existing database there are 18 locations with a high resolution of point data from in-situ tests (Halibut Vane) and non in-situ tests (Minivane and Torvane) that provide the clearest picture of undrained shear strength in the shallow region. The data shows that the design profiles originally created for these locations for deep foundations are generally not representative of the strength in the shallow region. They also show that in-situ test data show more variability than non in-situ data. There are also 25 Cone Penetration Tests in the existing database that show very high resolution data in the shallow region. These Cone Penetration Tests also indicate a crust that appears to be about 1 ft thick and exists along the edge of the continental shelf. Recommended future activities to build upon this work include re-evaluating the design profiles at these 43 locations at which high resolution studies have been performed in the shallow region, collecting these design profiles as well as any new design profiles and organizing them into a new database focused on shallow soils, generating a new generic profile base on the data within the new database, and creating a model that uses spatial variability analysis to calculate undrained shear strengths at new locations based on the data in the database. / text
388

Correction for distortion in polarization of reflected shear-waves in isotropic and anisotropic media

Campbell, Terence A 18 February 2014 (has links)
The progressive growth of onshore shale production (both gas and liquids) to replace depleting and aging oil fields may benefit from the use of surface seismic shear wave data analysis for full characterization of shale reservoir properties and lead to optimum development of these resources. This includes descriptions of azimuthal anisotropy (HTI - transverse isotropy with a horizontal symmetry axis) for characterization of fractures and internal fracture systems. The objective of this study is to document a predicted distortion in polarization of propagating seismic shear waves upon reflection at a subsurface interface and to propose a correction to this distortion. The polarization distortion occurs even in wholly isotropic media. This correction is based on an understanding of shear amplitude behavior as a function of the reflection incidence angle, particularly differences in the reflection angle relation for different shear components. This study includes a demonstration of the efficacy of the proposed correction by applying it to simulated and real direct shear-wave source data. Such corrections should result in a minimized polarization distortion in the reflection process. The apparent consistency of a null value (zero crossing) of the SV-SV reflectivity (near 20-24 degrees) for common density and velocity contrasts as well as the remarkably regular behavior of the SV-SV and SH-SH reflectivity curves following a linear relation in sin2 and tan2 of the incidence angle and offers the opportunity for a simple and stable correction with minimal sensitivity to detailed knowledge of contrasts in velocity and density. The only independent information required for the correction is the angle of incidence where the SV-SV and SH-SH reflections vanish and the range of these angles is typically quite limited. Some key questions were addressed in gaining an understanding of shear wave polarization distortion upon reflection for varying model data: 1) how do we address reflected polarization distortion for purely isotropic medium for varying incidence angles? 2) How do we apply this correction for an isotropic and anisotropic media for both simulated and actual field data 3) How do we address applications to real data and how distorted amplitudes can be corrected to identify actual subsurface HTI anisotropy. Significantly, the polarization distortion correction is implemented as a simple extension of the established Alford rotation for normal incidence shear reflections of varying polarization. This extension leads to the improved analysis of direct shear-source 3D data with inherently distorted polarization. Thus, analysis may be applied to estimate HTI anisotropy previously not realizable in finite offset data subject to polarization distortion. Example applications to actual field data are included. Note that the polarization correction does remove the AVO effects often exploited in analysis of P-P data where polarization is not an issue that is, the AVO amplitude effect is essentially removed from the SV-SV and SH-SH oriented direct shear-wave profiles, which permits proper analysis of the polarization. Further, additional analysis of the polarization correction on field data with documented anisotropy will be required to fully develop the usefulness of this proposed correction. / text
389

Zonal isolation improvement through enhanced cement-shale bonding

Liu, Xiangyu, active 21st century 24 February 2015 (has links)
The incompatibility of cement and shale and the subsequent failure of primary cementing jobs is a very significant concern in the oil & gas industry. On wells ranging from hydraulically fractured shale land wells to deepwater wells, this incompatibility leads to an increased risk in failing to isolate zones, which could possibly present a well control hazard and can lead to sustained casing pressure. The cement-shale interface presents a weak link that often becomes compromised by the loads incurred either during drilling, completion/stimulation or production phases. To formulate cements for effective zonal isolation, it is crucial to evaluate the bond strength of the cement-shale interface. Although several studies have focused on the interactions between cement and sandstone, very few studies have addressed the bonding behavior of cement with shale. The conventional push-out test protocol used to measure cement-to-sandstone shear bond strength has proven to be difficult to apply on shale due to its laminated or brittle nature that complicates sample preparation and can lead to shale or cement matrix failure instead of failure at the interface. In this paper, we present a novel, simple and versatile laboratory test procedure to measure the shear bond strength between cement and shale. The new procedure was used to develop cement formulations to improve the cement-to-shale bond. Two different design approaches were investigated. One involves introducing Gilsonite into cement to maintain shale integrity. The second design involves using surfactant to improve cement interfacial sealing property. Our results indicate that bond strength of cement with shale can be enhanced significantly incorporating surfactant in cement slurries. / text
390

Measurements of Vp and Vs in dry, unsaturated and saturated sand specimens with piezoelectric transducers

Valle-Molina, Celestino 28 August 2008 (has links)
Not available / text

Page generated in 0.0283 seconds