• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of soil-root interaction

Lan, Chinchun January 1985 (has links)
No description available.
2

Shearing Behavior Of Curved Interfaces

Iscimen, Mehmet 12 July 2004 (has links)
The frictional behavior of soil-construction material interfaces is of significant importance in geotechnical engineering applications such as retaining structures, pile foundations, geosynthetic liners, and trenchless technologies. Since most failures initiate and develop on the interfaces, special attention is required to predict the capacity of these weak planes in the particular application. Pipe-jacking and microtunneling technologies are being more widely used over the past decade and there is significant interest to predict the jacking forces and jacking distances achievable in order to achieve more efficient design and construction. This study focuses on the evaluation of the frictional characteristics and factors affecting the shear strength of pipe-soil interfaces. Eight different pipes made from fiber reinforced polymer (FRP), polycrete, steel, concrete, and vitrified clay were tested in the experimental program. For this purpose, a new apparatus was designed to conduct conventional interface direct shear testing on pipes of different curvature. This device allows coupons cut from actual conduits and pipes to be tested in the laboratory under controlled conditions. The apparatus includes a double-wall shear box, the inner wall of which is interchangeable to allow for testing against surfaces of different curvatures. By considering a narrow width section, the circular interface of pipes was approximated with a surface along the axial direction and the boundary is defined by the inner box. Roughness tests were performed using a stylus profilometer to quantify the surface characteristics of the individual pipes and relate these to the interface shear behavior. The surface topography showed different degrees of variability for the different pipes. To extend the range of roughness values tested and force the failure to occur in the particulate media adjacent to the interface, two artificial pipe surfaces were created using rough sandpapers. Interface shear tests were performed using the new apparatus with air-pluviated dense specimens of Ottawa 20/30 sand. Additional tests were performed using Atlanta blasting sand to evaluate the effect of particle angularity. The effect of normal stress and relative density were also examined. The interface strength was shown to increase with surface roughness and finally reach a constant value above a certain critical roughness value, which corresponded to the internal strength of the soil itself. This represented the failure location moving from the interface into the soil adjacent to the interface. Both the strength and the shearing mechanism were thus affected by the surface topography. It was also shown that the interface shear strength was affected by particle angularity, relative density and normal stress.
3

Bearing Capacity and Settlement Behaviour of Footings Subjected to Static and Seismic Loading Conditions in Unsaturated Sandy Soils

Mohamed, Fathi Mohamed Omar 25 February 2014 (has links)
Several studies were undertaken by various investigators during the last five decades to better understand the engineering behaviour of unsaturated soils. These studies are justified as more than 33% of soils worldwide are found in either arid or semi-arid regions with evaporation losses exceeding water infiltration. Due to this reason, the natural ground water table in these regions is typically at a greater depth and the soil above it is in a state of unsaturated conditions. Foundations of structures such as the housing subdivisions, multi-storey buildings, bridges, retaining walls, silos, and other infrastructure constructed in these regions in sandy soils are usually built within the unsaturated zone (i.e., vadose zone). Limited studies are reported in the literature to understand the influence of capillary stresses (i.e., matric suction) on the bearing capacity, settlement and liquefaction potential of unsaturated sands. The influence of matric suction in the unsaturated zone of the sandy soils is ignored while estimating or evaluating bearing capacity, settlement and liquefaction resistance in conventional engineering practice. The focus of the research presented in the thesis has been directed towards better understanding of these aspects and providing rational and yet simple tools for the design of shallow foundations (i.e., footings) in sands under both static and dynamic loading conditions. Terzaghi (1943) or Meyerhof (1951) equations for bearing capacity and Schmertmann et al. (1978) equation for settlement are routinely used by practicing engineers for sandy soils based on saturated soil properties. The assumption of saturated conditions leads to conservative estimates for bearing capacity; however, neglecting the influence of capillary stresses contributes to unreliable estimates of settlement or differential settlement of footings in unsaturated sands. There are no studies reported in the literature on how capillary stresses influence liquefaction, bearing capacity and settlement behavior in earthquake prone regions under dynamic loading conditions. An extensive experimental program has been undertaken to study these parameters using several specially designed and constructed equipment at the University of Ottawa. The influence of matric suction, confinement and dilation on the bearing capacity of model footings in unsaturated sand was determined using the University of Ottawa Bearing Capacity Equipment (UOBCE-2011). Several series of plate load tests (PLTs) were carried out on a sandy soil both under saturated and unsaturated conditions. Based on these studies, a semi-empirical equation has been proposed for estimating the variation of bearing capacity with respect to matric suction. The saturated shear strength parameters and the soil water characteristic curve (SWCC) are required for using the proposed equation. This equation is consistent with the bearing capacity equation originally proposed by Terzaghi (1943) and later extended by Meyerhof (1951) for saturated soils. Chapter 2 provides the details of these studies. The cone penetration test (CPT) is conventionally used for estimating the bearing capacity of foundations because it is simple and quick, while providing continuous records with depth. In this research program, a cone penetrometer was specially designed to investigate the influence of matric suction on the cone resistance in a controlled laboratory environment. Several series of CPTs were conducted in sand under both saturated and unsaturated conditions. Simple correlations were proposed from CPTs data to relate the bearing capacity of shallow foundations to cone resistance in saturated and unsaturated sands. The details of these studies are presented and summarized in Chapter 3. Standard penetration tests (SPTs) and PLTs were conducted in-situ sand deposit at Carp region in Ottawa under both saturated and unsaturated conditions. The test results from the SPTs and PLTs at Carp were used along with other data from the literature for developing correlations for estimating the bearing capacity of both saturated and unsaturated sands. The proposed SPT-CPT-based technique is simple and reliable for estimation of the bearing capacity of footings in sands. Chapter 4 summarizes the details of these investigations. Empirical relationships were proposed using the CPTs data to estimate the modulus of elasticity of sands for settlement estimation of footings in both saturated and unsaturated sands. This was achieved by modifying the Schmertmann et al. (1978) equation, which is conventionally used for settlement estimations in practice. Comparisons are provided between the three CPT-based methods that are commonly used for settlement estimations in practice and the proposed method for seven large scale footings in sandy soils. The results of the comparisons show that the proposed method provides better estimations for both saturated and unsaturated sands. Chapter 5 summarizes the details of these studies. A Flexible Laminar Shear Box (FLSB of 800-mm3 in size) was specially designed and constructed to simulate and better understand the behaviour of model surface footing under seismic loads taking account of the influence of matric suction in an unsaturated sandy soil. The main purpose of using the FLSB is to simulate realistic in-situ soils behaviour during earthquake ground shaking. The FLSB test setup with model footing was placed on unidirectional 1-g shake table (aluminum platform of 1000-mm2 in size) during testing. The resistance of unsaturated sand to deformations and liquefaction under seismic loads was investigated. The results of the study show that matric suction offers significant resistance to liquefaction and settlement of footings in sand. Details of the equipment setup, test procedure and results of this study are presented in Chapter 6. Simple techniques are provided in this thesis for estimating the bearing capacity and settlement behaviour of sandy soils taking account of the influence of capillary stresses (i.e., matric suction). These techniques are consistent with the methods used in conventional geotechnical engineering practice. The studies show that even low values of capillary stresses (i.e., 0 to 5 kPa) increases the bearing capacity by two to four folds, and the settlement of footings not only decreases significantly but also offers resistance to liquefaction in sands. These studies are promising and encouraging to use ground improvement techniques; such as capillary barrier techniques to maintain capillary stresses within the zone of influence below shallow foundations. Such techniques, not only contribute to the increase of bearing capacity, they reduce settlement and alleviate problems associated with earthquake effects in sandy soils.
4

Bearing Capacity and Settlement Behaviour of Footings Subjected to Static and Seismic Loading Conditions in Unsaturated Sandy Soils

Mohamed, Fathi Mohamed Omar January 2014 (has links)
Several studies were undertaken by various investigators during the last five decades to better understand the engineering behaviour of unsaturated soils. These studies are justified as more than 33% of soils worldwide are found in either arid or semi-arid regions with evaporation losses exceeding water infiltration. Due to this reason, the natural ground water table in these regions is typically at a greater depth and the soil above it is in a state of unsaturated conditions. Foundations of structures such as the housing subdivisions, multi-storey buildings, bridges, retaining walls, silos, and other infrastructure constructed in these regions in sandy soils are usually built within the unsaturated zone (i.e., vadose zone). Limited studies are reported in the literature to understand the influence of capillary stresses (i.e., matric suction) on the bearing capacity, settlement and liquefaction potential of unsaturated sands. The influence of matric suction in the unsaturated zone of the sandy soils is ignored while estimating or evaluating bearing capacity, settlement and liquefaction resistance in conventional engineering practice. The focus of the research presented in the thesis has been directed towards better understanding of these aspects and providing rational and yet simple tools for the design of shallow foundations (i.e., footings) in sands under both static and dynamic loading conditions. Terzaghi (1943) or Meyerhof (1951) equations for bearing capacity and Schmertmann et al. (1978) equation for settlement are routinely used by practicing engineers for sandy soils based on saturated soil properties. The assumption of saturated conditions leads to conservative estimates for bearing capacity; however, neglecting the influence of capillary stresses contributes to unreliable estimates of settlement or differential settlement of footings in unsaturated sands. There are no studies reported in the literature on how capillary stresses influence liquefaction, bearing capacity and settlement behavior in earthquake prone regions under dynamic loading conditions. An extensive experimental program has been undertaken to study these parameters using several specially designed and constructed equipment at the University of Ottawa. The influence of matric suction, confinement and dilation on the bearing capacity of model footings in unsaturated sand was determined using the University of Ottawa Bearing Capacity Equipment (UOBCE-2011). Several series of plate load tests (PLTs) were carried out on a sandy soil both under saturated and unsaturated conditions. Based on these studies, a semi-empirical equation has been proposed for estimating the variation of bearing capacity with respect to matric suction. The saturated shear strength parameters and the soil water characteristic curve (SWCC) are required for using the proposed equation. This equation is consistent with the bearing capacity equation originally proposed by Terzaghi (1943) and later extended by Meyerhof (1951) for saturated soils. Chapter 2 provides the details of these studies. The cone penetration test (CPT) is conventionally used for estimating the bearing capacity of foundations because it is simple and quick, while providing continuous records with depth. In this research program, a cone penetrometer was specially designed to investigate the influence of matric suction on the cone resistance in a controlled laboratory environment. Several series of CPTs were conducted in sand under both saturated and unsaturated conditions. Simple correlations were proposed from CPTs data to relate the bearing capacity of shallow foundations to cone resistance in saturated and unsaturated sands. The details of these studies are presented and summarized in Chapter 3. Standard penetration tests (SPTs) and PLTs were conducted in-situ sand deposit at Carp region in Ottawa under both saturated and unsaturated conditions. The test results from the SPTs and PLTs at Carp were used along with other data from the literature for developing correlations for estimating the bearing capacity of both saturated and unsaturated sands. The proposed SPT-CPT-based technique is simple and reliable for estimation of the bearing capacity of footings in sands. Chapter 4 summarizes the details of these investigations. Empirical relationships were proposed using the CPTs data to estimate the modulus of elasticity of sands for settlement estimation of footings in both saturated and unsaturated sands. This was achieved by modifying the Schmertmann et al. (1978) equation, which is conventionally used for settlement estimations in practice. Comparisons are provided between the three CPT-based methods that are commonly used for settlement estimations in practice and the proposed method for seven large scale footings in sandy soils. The results of the comparisons show that the proposed method provides better estimations for both saturated and unsaturated sands. Chapter 5 summarizes the details of these studies. A Flexible Laminar Shear Box (FLSB of 800-mm3 in size) was specially designed and constructed to simulate and better understand the behaviour of model surface footing under seismic loads taking account of the influence of matric suction in an unsaturated sandy soil. The main purpose of using the FLSB is to simulate realistic in-situ soils behaviour during earthquake ground shaking. The FLSB test setup with model footing was placed on unidirectional 1-g shake table (aluminum platform of 1000-mm2 in size) during testing. The resistance of unsaturated sand to deformations and liquefaction under seismic loads was investigated. The results of the study show that matric suction offers significant resistance to liquefaction and settlement of footings in sand. Details of the equipment setup, test procedure and results of this study are presented in Chapter 6. Simple techniques are provided in this thesis for estimating the bearing capacity and settlement behaviour of sandy soils taking account of the influence of capillary stresses (i.e., matric suction). These techniques are consistent with the methods used in conventional geotechnical engineering practice. The studies show that even low values of capillary stresses (i.e., 0 to 5 kPa) increases the bearing capacity by two to four folds, and the settlement of footings not only decreases significantly but also offers resistance to liquefaction in sands. These studies are promising and encouraging to use ground improvement techniques; such as capillary barrier techniques to maintain capillary stresses within the zone of influence below shallow foundations. Such techniques, not only contribute to the increase of bearing capacity, they reduce settlement and alleviate problems associated with earthquake effects in sandy soils.
5

Shaking Table Testing of Geotechnical Response of Densified Fine-Grained Soils to Cyclic Loadings: Application to Highly Densified Tailings

Alshawmar, Fahad Abdulaziz 17 March 2021 (has links)
Liquefaction is a major challenge in geotechnical engineering in which soil strength and stiffness are compromised due to earthquake activity. Understanding and predicting the behaviour and liquefaction susceptibility of soils under cyclic loading is a critical issue in civil engineering, mining and protective engineering. Numerous earthquake-induced ground failure events (e.g., substantial ground deformation, reduced bearing capacity) or liquefaction in natural fine-grained soils or manmade fine-grained soils (i.e., fine tailings) produced by mining activities have been observed and reported in the literature. Tailings are manmade soils that remain following the extraction of metals and minerals from mined ore in a mine processing plant. Traditionally, such tailings are stored in surface tailings impoundments at the mine’s surface. However, geotechnical and environmental risks and consequences related to conventional tailings impoundments have attracted the attention of the engineering community to develop novel methods of tailings disposal and management to minimize geotechnical and environmental risks. Thus, engineers have introduced and implemented innovative tailings technologies—thickened tailings and paste tailings—as cost-effective means for tailings management in mining operations. As both thickened tailings and paste tailings have lower water content and higher solid content than tailings in conventional impoundments, these tailings may be more resistant to liquefaction. However, it should be noted that the seismic or cyclic behaviour of these thickened and paste tailings, with and without heavy rainfall effects, are not fully understood. There is little technical information or data about the behaviour and liquefaction of thickened and paste tailings under seismic or cyclic loading conditions. The objective of the present PhD research is to investigate the response of layered thickened and paste tailings deposits, with and without heavy rainfall effects, to cyclic loads by conducting shaking table tests. To simulate the field deposition of thickened and paste tailings, tailings were deposited in three thin layers in a flexible laminar shear box (FLSB) attached to the shaking table equipment. A sinusoidal seismic loading at a frequency of 1 Hz and peak horizontal acceleration of 0.13g was applied at the bottom of the layered tailings deposits. Acceleration, displacement and pore water pressure responses to the cyclic loading were monitored at the middle depth of each layer of the tailings deposits. Regarding the acceleration response of these thickened and paste tailings deposits (without the effect of heavy rainfall), there was no difference between the middle of the bottom and middle layers or at the base of the shaking table. However, the acceleration at the middle of the top layer differed from the acceleration at the base of the shaking table. Throughout shaking, the layered tailings deposits (with and without the effect of heavy rainfall) exhibited contraction and dilation responses. The excess pore water pressure ratios of the layered thickened tailings deposit that was not exposed to heavy rainfall prior to shaking were found to exceed 1.0 during shaking. However, for the layered paste tailings deposit that was not exposed to the effect of heavy rainfall prior to shaking, the excess pore water pressure ratios were found to be lower than 0.85 during shaking. This reveals that without the effect of heavy rainfall, the layered thickened tailings deposit was susceptible to liquefaction, whereas the layered paste tailings deposit was resistant to liquefaction during shaking. The excess pore water ratios of the layered thickened and the paste tailings deposits that were exposed to heavy rainfall prior to shaking were found to be lower than 0.8 during shaking. This reveals that with the effect of heavy rainfall, the layered thickened and paste tailings deposits were resistant to liquefaction during shaking. The results and findings of this PhD research thus provide valuable information for the implementation of tailings in earthquake-prone areas.
6

Strength Of Different Anatolian Sands In Wedge Shear, Triaxial Shear, And Shear Box Tests

Erzin, Yusuf 01 January 2004 (has links) (PDF)
Past studies on sands have shown that the shear strength measured in plane strain tests was higher than that measured in triaxial tests. It was observed that this difference changed with the friction angle &amp / #966 / cv at constant volume related to the mineralogical composition. In order to investigate the difference in strength measured in the wedge shear test, which approaches the plane strain condition, in the triaxial test, and in the shear box test, Anatolian sands were obtained from different locations in Turkey. Mineralogical analyses, identification tests, wedge shear tests (cylindrical wedge shear tests (cylwests) and prismatic wedge shear tests (priswests)), triaxial tests, and shear box tests were performed on these samples. In all shear tests, the shear strength measured was found to increase with the inclination &amp / #948 / of the shear plane to the bedding planes. Thus, cylwests (&amp / #948 / = 60o) iii yielded higher values of internal friction &amp / #966 / by about 3.6o than priswests (&amp / #948 / = 30o) under normal stresses between 17 kPa and 59 kPa. Values of &amp / #966 / measured in cylwests were about 1.08 times those measured in triaxial tests (&amp / #948 / &amp / #8776 / 65o), a figure close to the corresponding ratio of 1.13 found by past researchers between actual plane strain and triaxial test results. There was some indication that the difference between cylwest and triaxial test results increased with the &amp / #966 / cv value of the samples. With the smaller &amp / #948 / values (30o and 40o), priswests yielded nearly the same &amp / #966 / values as those obtained in triaxial tests under normal stresses between 20 kPa and 356 kPa. Shear box tests (&amp / #948 / =0o) yielded lower values of &amp / #966 / than cylwests (by about 7.9o), priswests (by about 4.4o), and triaxial tests (by about 4.2o) under normal stresses between 17 kPa and 48 kPa. It was shown that the shear strength measured in shear box tests showed an increase when &amp / #948 / was increased from 30o to 60o / this increase (about 4.2o) was of the order of the difference (about 3.6o) between priswest (&amp / #948 / = 30o) and cylwest (&amp / #948 / = 60o) results mentioned earlier. Shear box specimens with &amp / #948 / = 60o, prepared from the same batch of any sample as the corresponding cylwests, yielded &amp / #966 / values very close to those obtained in cylwests.

Page generated in 0.0324 seconds