Spelling suggestions: "subject:"shear all"" "subject:"shear fall""
51 |
Large-Scale Cyclic Testing and Development of Ring Shaped - Steel Plate Shear Walls for Improved Seismic Performance of BuildingsPhillips, Adam Richard 28 November 2016 (has links)
A novel shear wall system for building structures has been developed that improves upon the performance of conventional steel plate shear walls by mitigating buckling. The new structural system, called the Ring Shaped - Steel Plate Shear Wall, was investigated and developed through experimental and computational methods. First, the plastic mechanism of the system was numerically derived and then analytically validated with finite element analyses. Next, five large-scale, quasi-static, cyclic experimental tests were conducted in the Thomas M. Murray Structures Laboratory at Virginia Tech. The large-scale experiments validated the system performance and provided data on the boundary frame forces, infill panel shear deformation modes, buckling mode shapes, and buckling magnitudes.
Multiple computational modeling techniques were employed to reproduce different facets of the system behavior. First, detailed finite element models were constructed to accurately reproduce the cyclic performance, yielding pattern, and buckling mode shapes. The refined finite element models were utilized to further study the boundary element forces and ultra-low cycle fatigue behavior of the system. Second, reduced-order computational models were constructed that can accurately reproduce the hysteretic performance of the web plates. The reduced-order models were then utilized to study the nonlinear response history behavior of four prototype building structures using Ring Shaped - Steel Plate Shear Walls and conventional steel plate shear walls. The nonlinear response history analyses investigated the application of the system to a short period and a long period building configuration. In total 176 nonlinear response history analyses were conducted and statistically analyzed.
Lastly, a practical design methodology for the Ring Shaped - Steel Plate Shear Wall web plates was presented. The experimental tests and computational simulations reported in this dissertation demonstrate that Ring Shaped - Steel Plate Shear Walls are capable of improving seismic performance of buildings by drastically reducing buckling and improving cyclic energy dissipation. / Ph. D. / A novel shear wall system for building structures has been developed that improves the performance of of buildings subjected to seismic loads. The new structural system, called the Ring Shaped - Steel Plate Shear Wall, was investigated and developed through experimental and computational methods. Five large-scale, cyclic experimental tests were conducted in the Thomas M. Murray Structures Laboratory at Virginia Tech. The large-scale experiments validated the system performance and provided data on the design forces and modes of failure.
Multiple modeling techniques were employed to reproduce different facets of the system behavior. Refined finite element models were utilized to further study the system forces and failure modes. Other computational models were constructed to accurately reproduce the cyclic performance of the system. These models were then utilized to study the seismic behavior of four prototype building structures using the Ring Shaped - Steel Plate Shear Walls and conventional steel shear walls. Lastly, a practical design methodology for the Ring Shaped - Steel Plate Shear Wall web plates was presented.
The experimental tests and computational simulations reported in this dissertation demonstrate that Ring Shaped - Steel Plate Shear Walls are capable of improving seismic performance of buildings. Additionally, the presented design methodology allows designers and researchers to continue exploring the RS-SPSW system.
|
52 |
Computational simulation and analytical development of Buckling Resistant Steel Plate Shear Wall (BR-SPSW)Maurya, Abhilasha 15 August 2012 (has links)
Steel plate shear walls (SPSWs) are an attractive option for lateral load resisting systems for both new and retrofit construction. They, however, present various challenges that can result in very thin web plates and excessively large boundary elements with moment connections, neither of which is economically desirable. Moreover, SPSW also suffers from buckling at small loads which results in highly pinched hysteretic behavior, low stiffness, and limited energy dissipation. To mitigate these shortcomings, a new type of SPSW has been developed and investigated. The buckling resistant steel plate shear wall (BR-SPSW) utilizes a unique pattern of cut-outs to reduce buckling. Also, it allows the use of simple shear beam-column connections and lends tunability to the shear wall system. A brief discussion of the concept behind the BR-SPSW is presented. A detailed parametric study is presented that investigates the sensitivity of the local and global system behavior to the geometric design variables using finite element models as the main tool. The key output parameters which define the system response are discussed in detail. Analytical solutions for some output parameters like strength and stiffness have been derived and resulting equations are proposed. Finally, preliminary suggestions have been made about how this system can be implemented in practice to improve the seismic resistance of the buildings. The proposed BR-SPSW system was found to exhibit relatively fuller hysteretic behavior with high resistance during the load reversals, without the use of moment connections. / Master of Science
|
53 |
Análise da interação entre núcleos estruturais e lajes em edifícios altos / Analysis of the interaction between shear/core walls and slab in high buildingsSousa Junior, Edgard 02 July 2001 (has links)
É apresentado um estudo sobre a análise de edifícios altos enrijecidos com núcleos estruturais utilizando-se processos discretos. A ligação do núcleo estrutural com as lajes do pavimento do edifício é o ponto principal deste estudo. As vigas, pilares e lajes são analisados utilizando-se o Método dos Elementos Finitos. Os núcleos estruturais, que no presente estudo podem ser de seção aberta ou semifechada, são analisados pela teoria de flexo-torção é levado em consideração o empanamento do elemento do núcleo, dessa forma aparece o esforço denominado bimomento. O empenamento do núcleo estrutural é transferido para as lajes, ocorrendo alteração em sua distribuição de esforços. Para o cálculo da estrutura do edifício como um todo é utilizada a técnica de subestruturação em que o edifício é dividido em subestruturas formadas por um determinado número de andares. Os resultados da forma de cálculo pesquisada são comparados com modelos já desenvolvidos por outros autores. / This is a study about the analysis of tall buildings with shear/core walls using discrete processes. The joining of shear/core with slabs in tall buildings is the main subject of this work. The beams, columns and slabs are analyzed using the Finite Element Method. The building analysis is in 1st order. The shear/core walls, in this study, can present open or semi-closed cross section; they are analyzed by the theory of warping of beams of solid sections. In this theory we consider the warping of the core element, accounting for the bimoment. The warping of the core is transferred to the slabs, and the efforts in the slabs are altered. In order to calculate the building structure we are using the sub-structure technique, the building is divided in substructures created by a certain number of floors. The results of this research are compared with models developed by other authors.
|
54 |
Análise experimental e numérica do comportamento de junta em painéis de contraventamento de alvenaria estrutural / Experimental and numerical analysis of the joint behavior of masonry shear wallMata, Rodrigo Carvalho da 14 June 2011 (has links)
A avaliação da capacidade de carga das estruturas de alvenaria submetidas a ações horizontais depende da confiabilidade dos modelos de dimensionamento utilizados. De fato, a alvenaria é um material heterogêneo com característica ortotrópicas. Além disso, por possuir juntas de argamassa que acarretam planos de fraqueza, geralmente a modelagem computacional desse tipo de estrutura apresenta grandes dificuldades. Um modelo robusto para alvenaria só pode ser desenvolvido por meio de uma descrição suficientemente precisa do comportamento mecânico individual de cada um dos seus componentes (unidades de alvenaria e a argamassa) e sobretudo nas juntas de argamassa, as quais são responsáveis pela maior parte dos fenômenos não-lineares que ocorrem na estrutura. Entretanto, diante da escassez de resultados experimentais, descrever esses comportamentos com a precisão e o rigor necessários é uma tarefa bastante difícil. Diante desta motivação, este trabalho se propôs a identificar e quantificar a influência da ligação unidade-argamassa, denominada junta, no comportamento estrutural de painéis de contraventamento de alvenaria estrutural executados com blocos de concreto. Assim, foram obtidos dados experimentais do comportamento da ligação unidade-argamassa e das partes componentes que posteriormente foram utilizados em modelagens computacionais realizadas para prever o comportamento estrutural de painéis de contraventamento submetidos a esforços horizontais no plano. Posteriormente, a partir dos resultados obtidos dos ensaios de painéis submetido a força horizontal e vertical e das modelagens numéricas propostas foi possível comparar os resultados experimentais e numéricos com os resultados obtidos pelo procedimento de dimensionamento da norma brasileira NBR 15812-1 (ABNT, 2010). Assim pode-se concluir que os valores da força horizontal máxima determinados a partir das recomendações da NBR 15812-1 (ABNT, 2010) apresentaram valores mais conservadores que os resultados experimentais e numéricos, como seria esperado. / The evaluation of load bearing capacity of masonry structures subjected to horizontal actions depends on the reliability of the dimensional models used. Masonry is indeed a heterogeneous material with orthotropic characteristics. In addition, due to its weak mortar joints, in general, the computational modeling of this type of structure presents major difficulties. A robust model for masonry structures can only be developed through a fairly accurate description of the individual mechanical behavior of each of its constituents (masonry units and mortar) and, especially, in the mortar joints, which are responsible for most nonlinear phenomena occurring in the structure. However, due to the lack of experimental data, describing these behaviors with the accuracy and rigor required is a rather difficult task. Hence, the objective of this study is to identify and quantify the influence of mortar-unit bond, also called joint, on the structural behavior of concrete block masonry shear walls. Accordingly, the experimental data of the behavior of the mortar-unit bond and the constituents, which were further used in the numerical modeling developed to predict the structural behavior of shear wall subjected to horizontal forces in the plane, were obtained. Subsequently, from the results obtained in the assays of shear walls subjected to a horizontal and vertical force and the numerical modeling proposed it was possible to compare the experimental and numerical results with those obtained by mean of the Brazilian Code NBR 15812-1 (ABNT, 2010). Therefore, it can be concluded that the values of maximum horizontal force determined according to the recommendations of Brazilian Code design criterion are more conservative values than the experimental and numerical values, as expected.
|
55 |
Influence Of The Shear Wall Area To Floor Area Ratio On The Seismic Performance Of Existing Reinforced Concrete BuildingsGunel, Orhun Ahmet 01 January 2013 (has links) (PDF)
An analytical study is performed to evaluate the influence of shear wall area to floor area ratio on the behavior of existing mid-rise reinforced concrete buildings under earthquake loading. The seismic performance of five existing school buildings with shear wall ratios between 0.00% and 2.50% in both longitudinal and transverse directions and their strengthened counterparts are evaluated. Based on the structural properties of the existing buildings, additional buildings with varying shear wall ratios are designed. Consequently, twenty four buildings with different floor plans, number of stories, cross-sectional properties of the members and material strengths are acquired. Nonlinear time-history analyses are performed for all buildings by utilizing the software program, SAP2000 v14.2.0. under seven different ground motion records. The results indicated that roof drifts and plastic deformations reduce with increasing shear wall ratios, but the rate of decrease is lower for higher shear wall ratios. Buildings with 1.00% shear wall ratio have significantly lower roof drifts and plastic deformations when compared to buildings with 0.00% or 0.50% shear wall ratio. Roof drifts and plastic deformations are minimized when the shear wall ratio is increased to 1.50%. After this limit, addition of shear walls has only a slight effect on the seismic performance of the analyzed buildings.
|
56 |
Seismic Performance Assessment of Multi-Storey Buildings with Cold Formed Steel Shear Wall SystemsMartinez Martinez, Joel January 2007 (has links)
Cold-Formed Steel (CFS) is a material used in the fabrication of structural and non-structural elements for the construction of commercial and residential buildings. CFS exhibits several advantages over other construction materials such as wood, concrete and hot-rolled steel (structural steel). The outstanding advantages of CFS are its lower overall cost and non-combustibility. The steel industry has promoted CFS in recent decades, causing a notable increase in the usage of CFS in building construction. Yet, structural steel elements are still more highly preferred, due to the complex analysis and design procedures associated with CFS members. In addition, the seismic performance of CFS buildings and their elements is not well known.
The primary objective of this study is to develop a method for the seismic assessment of the lateral-load resistant shear wall panel elements of CFS buildings. The Performance-Based Design (PBD) philosophy is adopted as the basis for conducting the seismic assessment of low- and mid-rise CFS buildings, having from one to seven storeys. Seismic standards have been developed to guide the design of buildings such that they do not collapse when subjected to specified design earthquakes. PBD provides the designer with options to choose the performance objectives to be satisfied by a building to achieve a satisfactory design. A performance objective involves the combination of an earthquake (i.e., seismic hazard) and a performance level (i.e., limit state) expected for the structure. The building capacity related to each performance level is compared with the demand imposed by the earthquake. If the earthquake demand is less than the building capacity, the structure is appropriately designed.
The seismic performance of a CFS building is obtained using pushover analysis, a nonlinear method of seismic analysis. This study proposes a Simplified Finite Element Analysis (SFEA) method to carry out the nonlinear structural analysis. In this study, lateral drifts associated with four performance levels are employed as acceptance criteria for the PBD assessment of CFS buildings. The lateral drifts are determined from experimental data.
In CFS buildings, one of the primary load-resistant elements is Shear Wall Panel (SWP). The SWP is constructed with vertically spaced and aligned C-shape CFS studs. The ends of the studs are screwed to the top and bottom tracks, and structural sheathing is installed on one or both sides of the wall. For the analysis of CFS buildings, Conventional Finite Element Analysis (CFEA) is typically adopted. However, CFEA is time consuming because of the large number of shell and frame elements required to model the SWP sheathing and studs. The SFEA proposed in this study consists of modeling each SWP in the building with an equivalent shell element of the same dimensions; that is, a complete SWP is modeled by a 16-node shell element. Thus, significantly fewer elements are required to model a building for SFEA compared to that required for CFEA, saving both time and resources. A model for the stiffness degradation of a SWP is developed as a function of the lateral strength of the SWP. The model characterizes the nonlinear behaviour of SWP under lateral loading, such that a realistic response of the building is achieved by the pushover analysis.
The lateral strength of a SWP must be known before its seismic performance can be assessed. In current practice, the lateral strength of a SWP is primarily determined by experimental tests due to the lack of applicable analytical methods. In this investigation, an analytical method is developed for determining the ultimate lateral strength of SWP, and associated lateral displacement. The method takes into account the various factors that affect the behaviour and the strength of SWP, such as material properties, geometrical dimensions, and construction details.
To illustrate the effectiveness and practical application of the proposed methodology for carrying out the PBD assessment of CFS buildings, several examples are presented. The responses predicted by the SFEA are compared with responses determined experimentally for isolated SWP. In addition, two building models are analyzed by SFEA, and the results are compared with those found by SAP2000 (2006). Lastly, the PBD assessment of two buildings is conducted using SFEA and pushover analysis accounting for the nonlinear behaviour of the SWP, to demonstrate the practicality of the proposed technology.
|
57 |
Seismic Performance Assessment of Multi-Storey Buildings with Cold Formed Steel Shear Wall SystemsMartinez Martinez, Joel January 2007 (has links)
Cold-Formed Steel (CFS) is a material used in the fabrication of structural and non-structural elements for the construction of commercial and residential buildings. CFS exhibits several advantages over other construction materials such as wood, concrete and hot-rolled steel (structural steel). The outstanding advantages of CFS are its lower overall cost and non-combustibility. The steel industry has promoted CFS in recent decades, causing a notable increase in the usage of CFS in building construction. Yet, structural steel elements are still more highly preferred, due to the complex analysis and design procedures associated with CFS members. In addition, the seismic performance of CFS buildings and their elements is not well known.
The primary objective of this study is to develop a method for the seismic assessment of the lateral-load resistant shear wall panel elements of CFS buildings. The Performance-Based Design (PBD) philosophy is adopted as the basis for conducting the seismic assessment of low- and mid-rise CFS buildings, having from one to seven storeys. Seismic standards have been developed to guide the design of buildings such that they do not collapse when subjected to specified design earthquakes. PBD provides the designer with options to choose the performance objectives to be satisfied by a building to achieve a satisfactory design. A performance objective involves the combination of an earthquake (i.e., seismic hazard) and a performance level (i.e., limit state) expected for the structure. The building capacity related to each performance level is compared with the demand imposed by the earthquake. If the earthquake demand is less than the building capacity, the structure is appropriately designed.
The seismic performance of a CFS building is obtained using pushover analysis, a nonlinear method of seismic analysis. This study proposes a Simplified Finite Element Analysis (SFEA) method to carry out the nonlinear structural analysis. In this study, lateral drifts associated with four performance levels are employed as acceptance criteria for the PBD assessment of CFS buildings. The lateral drifts are determined from experimental data.
In CFS buildings, one of the primary load-resistant elements is Shear Wall Panel (SWP). The SWP is constructed with vertically spaced and aligned C-shape CFS studs. The ends of the studs are screwed to the top and bottom tracks, and structural sheathing is installed on one or both sides of the wall. For the analysis of CFS buildings, Conventional Finite Element Analysis (CFEA) is typically adopted. However, CFEA is time consuming because of the large number of shell and frame elements required to model the SWP sheathing and studs. The SFEA proposed in this study consists of modeling each SWP in the building with an equivalent shell element of the same dimensions; that is, a complete SWP is modeled by a 16-node shell element. Thus, significantly fewer elements are required to model a building for SFEA compared to that required for CFEA, saving both time and resources. A model for the stiffness degradation of a SWP is developed as a function of the lateral strength of the SWP. The model characterizes the nonlinear behaviour of SWP under lateral loading, such that a realistic response of the building is achieved by the pushover analysis.
The lateral strength of a SWP must be known before its seismic performance can be assessed. In current practice, the lateral strength of a SWP is primarily determined by experimental tests due to the lack of applicable analytical methods. In this investigation, an analytical method is developed for determining the ultimate lateral strength of SWP, and associated lateral displacement. The method takes into account the various factors that affect the behaviour and the strength of SWP, such as material properties, geometrical dimensions, and construction details.
To illustrate the effectiveness and practical application of the proposed methodology for carrying out the PBD assessment of CFS buildings, several examples are presented. The responses predicted by the SFEA are compared with responses determined experimentally for isolated SWP. In addition, two building models are analyzed by SFEA, and the results are compared with those found by SAP2000 (2006). Lastly, the PBD assessment of two buildings is conducted using SFEA and pushover analysis accounting for the nonlinear behaviour of the SWP, to demonstrate the practicality of the proposed technology.
|
58 |
Impacts Of Soil-structure Interaction On The Fundamental Period Of Shear Wall Dominant BuildingsDerinoz, Okan 01 July 2006 (has links) (PDF)
In many seismic design codes and provisions, such as Uniform Building Code and Turkish Seismic Code, prediction of fundamental period of shear-wall dominant buildings, constructed by tunnel form technique, to compute the anticipated seismic forces is achieved by empirical equations considering the height of the building and ratio of effective shear-wall area to first floor area as the primary predictor parameters. However, experimental and analytical studies have collectively indicated that these empirical formulas are incapable of predicting fundamental period of shear-wall dominant buildings, and consequently result in erroneous computation of design forces. To compensate for this deficiency, an effective yet simple formula has recently been developed by Balkaya and Kalkan (2004), and tested against the data from ambient surveys on existing shear-wall dominant buildings. In this study, previously developed predictive equation is modified to include the effects of soil-structure interaction on the fundamental period. For that purpose, 140 shear-wall dominant buildings having a variety of plans, heights and wall-configurations were re-analyzed for four different soil conditions classified according to NEHRP. The soil effects on the foundation were represented by the translational and rotational springs, and their rigidities were evaluated from foundation size and elastic uniform compressibility of soil. Based on the comprehensive study conducted, improved prediction of fundamental period is achieved. The error in predictions on average is about 15 percent, and lending further credibility to modified formula considering soil-structure interaction to be used in engineering practice.
|
59 |
Evaluation Of Shear Wall Indexes For Reinforced Concrete BuildingsSoydas, Ozan 01 February 2009 (has links) (PDF)
An analytical study was carried out to evaluate shear wall indexes for low to mid-rise reinforced concrete structures. The aim of this study was to evaluate the effect of different shear wall ratios on performance of buildings to be utilized in the preliminary assessment and design stages of reinforced concrete buildings with shear walls. In order to achieve this aim, forty five 3D building models with two, five and eight storeys having different wall ratios were generated. Linearly elastic and nonlinear static pushover analyses of the models were performed by SAP2000. Variation of roof drift and interstorey drift with shear wall ratio was obtained and results were compared with the results of approximate procedures in the literature. Additionally, performance evaluation of building models was carried out according to the linearly elastic method of Turkish Earthquake Code 2007 with Probina Orion. According to the results of the analysis, it was concluded that drift is generally not the primary concern for low to mid-rise buildings with shear walls. A direct relationship could not be established between wall index and code performance criteria. However, approximate limits for wall indexes that can be used in the preliminary design and assessment stages of buildings were proposed for different performance levels.
|
60 |
A Numerical Study On Response Factors For Steel Plate Shear Wall SystemsKurban, Can Ozan 01 July 2009 (has links) (PDF)
Design recommendations for steel plate shear wall (SPSW) systems have recently been introduced into seismic provisions for steel buildings. Response modification, overstrength, and displacement amplification factors for SPSW systems presented in the design codes were based on professional experience and judgment. A numerical study has been undertaken to evaluate these factors for SPSW systems. Forty four unstiffened SPSWs possessing different geometrical characteristics were designed based on the recommendations given in the AISC Seismic Provisions. Bay width, number of stories, story mass, and steel plate thickness were considered as the prime variables that influence the response. Twenty records were selected to include the variability in ground motion characteristics. In order to provide a detailed analysis of the post-buckling response, three-dimensional finite element analyses were conducted for the 44 structures subjected to the selected suite of earthquake records. For each structure and earthquake record two analyses were conducted in which the first one includes geometrical nonlinearities and the other one includes both geometrical and material nonlinearities, resulting in a total of 1760 time history analysis. In this thesis, the details of the design and analysis methodology are given. Based on the analysis results response modification, overstrength and displacement amplification factors for SPSW systems are evaluated.
|
Page generated in 0.0733 seconds