Spelling suggestions: "subject:"shear strength off soilsomething"" "subject:"shear strength off soilpolluting""
21 |
Use of the cone penetration test to assess the liquefaction potential of tailings storage facilitiesTorres Cruz, Luis Alberto January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy, 2016 / The performance in tailings storage facilities (TSFs) of three methods based on the cone penetration test (CPT) to assess liquefaction potential is explored. For two of these methods the investigation highlights potential limitations mostly related with the experimental data that supports some of the equations used by the methods. However, the methodologies yielded mostly correct performance predictions when implemented on TSF case histories in which an undrained response is believed to have occurred. The positive performance of both methodologies must be tempered by the limitations identified in the methods.
The steady state line (SSL) is an input of the third method considered. Accordingly, the correlation between the SSL and soil index parameters was investigated using a database of 151 non-plastic soiltypes compiled from data previously reported in the literature. The SSLs were modelled in void ratio (e) - mean effective stress (p') space, using a logarithmic equation. The y-intercept of the SSL is termed Γ, and the slope is termed λ. A direct, and linear (R2 = 0.74) correlation between the minimum void ratio (emin) and Γ was found. Although previous research has explored the effect of non-plastic fines on the SSL, the analysis presented herein shows that the Γ-emin correlation is independent of fines content. The correlation is also independent of the angularity of the particles provided that these are bulky, as opposed to platy. A direct λ-emin correlation was also found; however this correlation is much weaker and probably obscured by uncertainties in void ratio measurements.
Triaxial testing was conducted to determine the SSLs of three tailings soiltypes obtained from a single TSF. The trends observed in the resulting SSLs are in agreement with the Γ-emin and λ-emin correlations from the database.
An assessment was made of the sensitivity of the third method, which is based on a state parameter (ψ), to variations in λ throughout a single TSF. It was found that in some TSFs, the variations of λ are small enough to be disregarded without significantly affecting the accuracy of ψ. However, in other TSFs it is necessary to estimate how λ varies throughout the deposit.
iii / CK2017
|
22 |
Applications of cone, vane and vane-cone to predict stress-strain behaviour of unsaturated cohesive soilLiao, Chung-Lon January 1986 (has links)
No description available.
|
23 |
Reconstruction, characterization, modeling and visualization of inherent and induced digital sand microstructuresLu, Ye 15 November 2010 (has links)
Strain localization, the phenomenon of large shear deformation within thin zones of intensive shearing, commonly occurs both in-situ and in the laboratory tests on soils specimens. The intriguing mechanism of strain localization and how it will affect the general behavior of soil specimens have been investigated by many researchers. Some of the efforts have focused on finding the links between material properties (void space, fabric tensor) and mechanical behavior (stress, strain, volumetric strain). In the last ten years, several extensive studies have been conducted at Georgia Tech to investigate the mechanism of strain localization and link the microstructural properties with the engineering behavior of Ottawa sands. These studies have included 2-D and 3-D characterization of soil microstructures under either triaxial or biaxial shearing conditions. To extend and complement these previous studies, the current study focuses particularly on 3-D reconstruction, analysis and modeling of specimens of Ottawa sand subject to triaxial or biaxial loading. The 3-D microstructure of biaxial specimens was reconstructed using an optical microscopy based montage and serial sectioning technique. Based on the reconstructed 3-D digital volumes, a series of 2-D and 3-D characterizations and analyses, including local void ratio distributions, extent of shear bands, influence of soil fabrics and packing signature effects, were conducted. In addition to the image analysis based reconstruction and characterization, the 3-D discrete element method (DEM) code, PFC3D, was used to explore both biaxial and triaxial shear related soil behaviors at the global and particulate scale. Void ratio distributions, coordination numbers, particle rotations and displacements, contact normal distributions and normal contact forces as well as global stress and strain responses were investigated and analyzed to help understand the mechanism of strain localization. The microstructures of the numerical specimens were also characterized in the same way as the physical specimens and similar strain localization patterns were identified. Combined with the previous related studies, the current study provides new insights into the strain localization phenomenon of Ottawa sands subject to triaxial and biaxial loading. In addition, the reconstructed digital specimens were subject to a series of dissection studies which revealed exciting new insights into "microstructure signatures" which exist at both meso and micro scales within the real and simulated specimens.
|
24 |
Applications of cone, vane and vane-cone to predict stress-strain behaviour of unsaturated cohesive soilLiao, Chung-Lon January 1986 (has links)
No description available.
|
25 |
A method to predict deformations for partially drained conditions in braced excavationsVon Rosenvinge, Theodore January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 163-166. / by Theodore von Rosenvinge IV. / M.S.
|
26 |
A model for predicting narrow tool behavior under dynamic conditionsSwick, W. Christopher January 1984 (has links)
Most models available today for predicting the forces encountered by tillage tools apply to slow moving tools and do not take into account speed effects. However, most tillage operations are performed at speeds in the range of 2-8 km/h, and experimental studies show that tool forces increase significantly with tool speed.
This effort of developing a model for predicting the forces on narrow tools under dynamic conditions was carried out in three steps. First, a series of laboratory tests was conducted to determine the effect of shear rate on soil shear strength and soil-metal friction parameters. Second, a model was developed to include dynamic effects. Third, the model was verified experimentally under laboratory conditions.
Direct shear tests using a conventional shear box were conducted on an artificial soil at shear rates between 0. 5 and 12 7 cm/min. Experimental results showed that for the soil tested, the angle of internal friction, soil-metal friction angle, cohesion, and adhesion are independent of shear rate.
A soil-tillage tool interaction model developed for quasi-static soil failure was modified to include shear rate effects and accelerational force effects.
Experimental verification tests for the model were conducted under controlled conditions using an indoor soil bin facility. Tests were conducted with flat tines at speeds from 5. 4 to 120 cm/s. The overall trend was for the model to underpredict the observed total tool force by 16 %. However, the model demonstrated that terms including accelerational force effects can account for a large portion of the increase in tool force observed to occur with an increase in tool speed. / Master of Science
|
27 |
Geomaterial gradation influences on interface shear behaviorFuggle, Andrew Richard 04 April 2011 (has links)
Particulate materials are ubiquitous in the natural environment and have served throughout human history as one of the basic materials for developing civilizations. In terms of human activity, the handling of particulate materials consumes approximately 10% of all the energy produced on earth. Advances in the study and understanding of particulate materials can thus be expected to have a major impact on society.
Geotechnical engineers have a long history of studying particulate materials since the fundamental building blocks of the profession include sands, silts, clays, gravels and ores, all of which are in one form or another particulates. The interface between particulates and other engineered materials is very important in determining the overall behavior of many geotechnical systems. Laboratory experimental studies into interface shear behavior has until now, been largely confined to systems involving uniformly graded sands comprised of a single particle size.
This study addresses these potential shortcomings by investigating the behavior of binary particle mixtures in contact with surfaces. The binary nature of the mixtures gives rise to a changing fabric state which in turn can affect the shear strength of the mixture. Accordingly, packing limit states and the shear strength of binary mixtures were investigated across a range of mixtures, varying in particle size ratio and the proportion of fine particles to provide a reference.
Binary mixtures in contact with smooth surfaces were investigated from both a global shear response and a contact mechanics perspective. A model was developed that allowed for the prediction of an interface friction coefficient based on fundamental material properties, particle and mixture parameters. Surface roughness changes as a result of shearing were also examined.
The interface shear behavior with rough interfaces was examined in the context of the relative roughness between particles and surface features. The interpretation of traditional measures of relative roughness suffer from the need for a definitive average particle size, which is ambiguous in the case of non-uniform mixtures. Measures of an applicable average particle size for binary mixtures were evaluated.
|
28 |
Performance of penetrometers in deepwater soft soil characterisationLow, Han Eng January 2009 (has links)
Offshore developments for hydrocarbon resources have now progressed to water depths approaching 2500 m. Due to the difficulties and high cost in recovering high quality samples from deepwater site, there is increasing reliance on in situ tests such as piezocone and full-flow (i.e. T-bar and ball) penetration tests for determining the geotechnical design parameters. This research was undertaken in collaboration with the Norwegian Geotechnical Institute (NGI), as part of a joint industry project, to improve the reliability of in situ tests in determining design parameters and to improve offshore site investigation practice in deepwater soft sediments. In this research, a worldwide high quality database was assembled and used to correlate intact and remoulded shear strengths (measured from laboratory and vane shear tests) with penetration resistances measured by piezocone, T-bar and ball penetrometers. The overall statistics showed similar and low levels of variability of resistance factors for intact shear strength (N-factors) for all three types of penetrometer. In the correlation between the remoulded penetration resistance and remoulded shear strength, the resistance factors for remoulded shear strength (Nrem-factors) were found higher than the N-factors. As a result, the resistance sensitivity is less than the strength sensitivity. The correlations between the derived N-factors and specific soil characteristics indicated that the piezocone N-factors are more influenced by rigidity index than those for the T-bar and ball penetrometers. The effect of strength anisotropy is only apparent in respect of N-factors for the T-bar and ball penetrometers correlated to shear strengths measured in triaxial compression. On the other hand, the Nrem-factors showed slight tendency to increase with increasing strength sensitivity but were insensitive to soil index properties. These findings suggest that the full-flow penetrometers may be used to estimate remoulded shear strength and are potentially prove more reliable than the piezocone in estimating average or vane shear strength for intact soil but the reverse is probably true for the estimation of triaxial compression strength.
|
Page generated in 0.0858 seconds