• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 62
  • 62
  • 14
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dynamic instability of stratified shear flow in the upper equatorial Pacific

Sun, Chaojiao. January 1997 (has links)
Thesis (Ph. D.)--Oregon State University, 1997. / Includes bibliographical references (leaves 70-72).
12

Stability of transverse waves in shallow flows

Khayat, R. E. (Roger Edmond) January 1981 (has links)
No description available.
13

Surface wave tomography and shear wave velocity structure of the Southwestern block of the Congo craton

Mangongolo, Azangi 27 February 2012 (has links)
M.Sc., Faculty of Science, University of the Witwatersrand, 2011 / Rayleigh wave dispersion curves are used to invert for the group velocity maps of the southwestern block of the Congo craton. The group velocity maps were then inverted to obtain the three dimensional shear-wave velocity of the lithosphere beneath the region. In the process, the adjacent Kalahari craton and Damara mobile belt were also mapped to help constrain the southernmost edge of the Congo craton. To obtain the surface wave group velocity tomography, event-station dispersion curves of Rayleigh waves were measured using the multiple filter analysis method. Then the dispersion curves were inverted using the conjugate gradient least-square (CGLSQR) inversion method. To check the reliability of the result, a checkerboard test was performed. The 2-dimensional group velocities and 3-dimensonal shear-wave velocities were found to be faster beneath the southwestern block of the Congo craton and the Kalahari craton and slower in the Damara mobile belt. The group velocity map at 20s period shows that basins are 0 to 3% slower than PREM model. For longer period (50s to 120s), the Central and East African Rift system are ~ 5 % faster, cratons are 5 to 8% faster, and the adjacent mobile belts are 0 to 4% faster than the PREM model. The Afar depression is the slowest, up to 6% slower than the continental PREM model at all periods. The shear-wave velocity maps reveal that (1) the Afar area is the slowest (up to 8% slower than the IASP91 model), (2) the cratons are faster (up to 6% faster than IASP91) than the surrounding mobile belts (up to 2% faster than IASP91). The East African Rifts system is also slow (up to 5%). The Damara mobile belt constitutes a clear separation terrain between the Congo craton and the Kalahari craton. This result is consistent with previous studies by Pasyanos and Nyblade (2007), and Priestly et al. (2006, 2008), who also found faster shear-wave velocities beneath the Kalahari, Congo and Tanzania cratons. The relatively slow seismic velocities (-1 to 2% compared to IASP91) in the Proterozoic Damara mobile belt between the southwestern block of the Congo craton and the Kalahari craton are explained by the view that the Proterozoic lithosphere has hotter rock materials than the SW block of the Congo craton and the Kalahari craton. Our model of faster lithosphere beneath the SW block of the Congo and the Kalahari craton is also consistent with the model of strongly depleted (in basaltic components) lithosphere beneath these craton; compared to less depleted lithosphere beneath the DMB.
14

Measurements of Vp and Vs in dry, unsaturated and saturated sand specimens with piezoelectric transducers

Valle-Molina, Celestino, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
15

Laboratory investigation of electrostatic ion waves modified by parallel-ion-velocity shear

Teodorescu, Catalin. January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xiv, 215 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 107-113).
16

Measurements of Vp and Vs in dry, unsaturated and saturated sand specimens with piezoelectric transducers

Valle-Molina, Celestino 28 August 2008 (has links)
Not available / text
17

Shear wave data collection in mid America using an automated surface source during seismic cone testing

Casey, Thomas J. 12 1900 (has links)
No description available.
18

Seismic body-wave anisotropy beneath continents

Singh, Jasbinder January 1983 (has links)
A search for the effects of anisotropy on seismic body-waves predicted by theory is described. Preliminary studies were based on long-period data from the WWSSN, HGLP and SRO networks. These showed that data from the WWSSN network are unsuitable for anisotropy studies because of features in the geometry of the recording system which lead to misalignment of the digitizer relative to the galvanometer-swing (which it is not always possible to correct) and the fact that the horizontal components are not always well matched. Digital data from the HGLP (recorded after 1976) and SRO networks are more suitable for anisotropy studies but eventually it was found that the anisotropic differences are too small to be resolved by long-period instruments. Analysis of short-period teleseismic shear-waves observed at LRSM stations located in United States and southern Canada has revealed shear-wave splitting diagnostic of anisotropy somewhere along the path. The shear-wave splitting is often seen as two separate shear-wave arrivals on the rotated horizontal components. All cases of shear-wave splitting are indicated by an abrupt change in the direction of particle-motion in the horizontal plane. A selection of seismograms and associated particlemotion diagrams is presented in order to illustrate shear-wave splitting. The polarizations of the first arrival shear-waves and the delays between the shear-wave arrivals were measured and are presented in the form of stereograms. The maximum shear-wave delay observed is 2.75 seconds and on the basis of this, we calculate the thickness of the anisotropic layer to be 248 kms for a model with 4.5% differential shearwave velocity anisotropy. For a model with much higher differential shear-wave velocity anisotropy (8.4%), the thickness of the layer is only 136 kms. Our results do not allow us to constrain the depth to the top of the anisotropic layer, although on the basis of other studies we believe the anisotropic layer to be situated immediately below the Mohorovicic discontinuity. The polarizations are broadly similar to those obtained theoretically for the y- and z-cuts of olivine, transversely isotropic olivine and mixture of transversely isotropic olivine/isotropic material. On the basis of this, we tentatively identify N50°E as a direction of symmetry and note that it is approximately parallel to the absolute motion of the North-American plate. We therefore suspect a causal relationship between plate motion and the generation of anisotropy. The most likely hypothesis is that as the continental lithosphere moves across the asthenosphere, the drag on the lithosphere sets up a horizontal compression in the direction of motion of the lithosphere relative to the asthenosphere and olivine crystals align by {Okl} [100] pencil glide so that the a-axis points into the direction of plate motion while the b and c axes form girdles perpendicular to the a-axis. This would result in transverse isotropy with the axis of symmetry horizontal, an orientation which is consistent with our results. The existence of anisotropy in the upper mantle has implications for other seismological studies. In particular, focal mechanism studies which rely solely on S-wave polarizations will be erroneous and studies of travel-time residuals will need to take account of the anisotropy.
19

Influences of mean shear in Florida current on turbulent production by internal waves /

Winkel, David Patrick. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographic references (p. [105]-113).
20

Shear velocity structure of the mantle beneath the North American plate

Grand, Stephen Pierre. January 1986 (has links)
Thesis (Ph. D.)--California Institute of Technology, 1986. / Includes bibliographical references (leaves 215-228).

Page generated in 0.0368 seconds