• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 62
  • 62
  • 14
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Development of shear wave velocity profiles in the deep sediments of the Mississippi Embayment using surface wave and spectral ratio methods

Bailey, Jonathan Pqul. January 2008 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2008. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 10, 2009 Includes bibliographical references.
42

Post processing of cone penetration data for assessing seismic ground hazards, with application to the new Madrid seismic

Liao, Tianfei. January 2005 (has links)
Thesis (Ph. D.)--Civil and Environmental Engineering, Georgia Institute of Technology, 2006. / Mayne, Paul W., Committee Chair ; Goldsman, David, Committee Member ; Lai, James, Committee Member ; Rix, Glenn J., Committee Member ; Santamarina, J. Carlos, Committee Member.
43

The relationship between void ratio and shear wave velocity of gold tailings

Chang, Hsin-Pei Nicol. Unknown Date (has links)
Thesis (M.Eng.)--University of Pretoria, 2004. / Includes summary. Includes bibliographical references (leaves 92-100).
44

3D P- and converted shear wave characteristics of the Morrow production trend in the Buffalo Valley field, Chaves-Eddy County, New Mexico

Pyakurel, Sandeep. January 2005 (has links)
Thesis (M.S.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains xi, 145 p. : ill. (some col.), maps (some col.). Includes abstract. Includes bibliographical references (p. 141-145).
45

Medição de propriedades viscoelásticas de líquidos por ultrassom. / Ultrasonic measurement of the viscoelastic properties of liquids.

Ediguer Enrique Franco Guzmán 23 June 2010 (has links)
A medição das propriedades viscoelásticas de líquidos por ultrassom tem sido um tema de pesquisa importante desde meados do século XX, principalmente, pela possibilidade de realizar medições em tempo real da viscosidade. O método de medição baseia-se na determinação do coeficiente de reflexão complexo (magnitude e fase) de ondas de cisalhamento refletidas da interface definida entre um sólido e uma amostra líquida. Enquanto a medição da magnitude é relativamente simples e precisa, a medição da fase é muito difícil devido à forte dependência da temperatura, que gera uma incerteza muito grande. No entanto, na medição da viscosidade em regime newtoniano somente a magnitude é requerida. Ocorre que os resultados experimentais reportados até o momento na literatura não coincidem quantitativamente com a teoria. Neste trabalho, uma nova técnica que permite determinar com boa precisão a magnitude do coeficiente de reflexão e, por conseguinte, a viscosidade de líquidos em regime newtoniano foi desenvolvida. Foi mostrado que a maioria dos líquidos testados apresentam comportamento newtoniano à frequência de trabalho de 1MHz, com exceção de alguns óleos automotivos de alta viscosidade, que possuem claramente comportamento viscoelástico. Desvios menores que 12,5% nas medições da viscosidade dinâmica de substâncias com moléculas relativamente simples, como glicerina e glicose, mostram a viabilidade da técnica. Também é proposto um novo método que permite calibrar o dispositivo de medição para monitorar a viscosidade de um líquido ou grupo de líquidos. Além disso, uma aplicação na monitoração da contaminação da água por substâncias oleosas é apresentada. / The ultrasonic measurement of viscoelastic properties of liquids has been an important research topic since the mid-twentieth century mainly due to the possibility of real-time viscosity measurements. The measurement technique is based on the determination of the complex reflection coefficient (magnitude and phase) of shear waves reflected from the solid-liquid interface. While magnitude measurement is relatively simple and precise, phase measurement is a difficult task due to strong temperature dependence that induces large errors. However, when the measurement is carried out under Newtonian regimen only the magnitude is required. Nonetheless, experimental results reported in literature until now do not agree quantitatively with the theory. In this work, it was developed a novel technique that accurately and precisely determines the reflection coefficient magnitude and, consequently, the Newtonian viscosity. Most tested liquids showed Newtonian behavior at the working frequency of 1 MHz except for some automotive oils of high viscosity, which showed an evident viscoelastic behavior. Deviations up to 12.5% in the dynamic viscosity measurement of substances with relatively simple molecules, such as glycerin and corn syrup, show the technique suitability. A calibration method of the measurement cell allowing the indirect viscosity measurement of a liquid or group of liquids is proposed. Moreover, a new application to oil-in-water contamination monitoring is presented.
46

Enhanced Integration of Shear Wave Velocity Profiling in Direct-Push Site Characterization Systems

McGillivray, Alexander Vamie 13 November 2007 (has links)
Enhanced Integration of Shear Wave Velocity Profiling in Direct-Push Site Characterization Systems Alexander V. McGillivray 370 Pages Directed by Dr. Paul W. Mayne Shear wave velocity (VS) is a fundamental property of soils directly related to the shear stiffness at small-strains. Therefore, VS should be a routine measurement made during everyday site characterization. There are several lab and field methods for measuring VS, but the seismic piezocone penetration test (SCPTu) and the seismic dilatometer test (SDMT) are the most efficient means for profiling the small-strain stiffness in addition to evaluating large-strain strength, as well as providing evaluations of the geostratigraphy, stress state, and permeability, all within a single sounding. Although the CPT and DMT have been in use for over three decades in the USA, they are only recently becoming commonplace on small-, medium-, and large-size projects as more organizations begin to realize their benefits. Regrettably, the SCPTu and the SDMT are lagging slightly behind their non-seismic counterparts in popularity, in part because the geophysics component of the tests has not been updated during the 25 years since the tests were envisioned. The VS measurement component is inefficient and not cost effective for routine use. The purpose of this research is to remove the barriers to seismic testing during direct-push site characterization with SCPTu and SDMT. A continuous-push seismic system has been developed to improve the integration of VS measurements with SCPTu and SDMT, allowing VS to be measured during penetration without stopping the progress of the probe. A new type of portable automated seismic source, given the name RotoSeis, was created to generate repeated hammer strikes at regularly spaced time intervals. A true-interval biaxial seismic probe and an automated data acquisition system were also developed to capture the shear waves. By not limiting VS measurement to pauses in penetration during rod breaks, it is possible to make overlapping VS interval measurements. This new method, termed frequent-interval, increases the depth resolution of the VS profile to be more compatible with the depth intervals of the near-continuous non-seismic measurements of the SCPTu and the SDMT.
47

Seismic characterization of naturally fractured reservoirs

Bansal, Reeshidev, 1978- 29 August 2008 (has links)
Many hydrocarbon reservoirs have sufficient porosity but low permeability (for example, tight gas sands and coal beds). However, such reservoirs are often naturally fractured. The fracture patterns in these reservoirs can control flow and transport properties, and therefore, play an important role in drilling production wells. On the scale of seismic wavelengths, closely spaced parallel fractures behave like an anisotropic media, which precludes the response of individual fractures in the seismic data. There are a number of fracture parameters which are needed to fully characterize a fractured reservoir. However, seismic data may reveal only certain fracture parameters and those are fracture orientation, crack density and fracture infill. Most of the widely used fracture characterization methods such as Swave splitting analysis or amplitude vs. offset and azimuth (AVOA) analysis fail to render desired results in laterally varying media. I have conducted a systematic study of the response of fractured reservoirs with laterally varying elastic and fracture properties, and I have developed a scheme to invert for the fracture parameters. I have implemented a 3D finite-difference method to generate multicomponent synthetic seismic data in general anisotropic media. I applied the finite-difference algorithm in both Standard and Rotated Staggered grids. Standard Staggered grid is used for media having symmetry up to orthorhombic (isotropic, transversely isotropic, and orthorhombic), whereas Rotated Staggered grid is implemented for monoclinic and triclinic media. I have also developed an efficient and accurate ray-bending algorithm to compute seismic traveltimes in 3D anisotropic media. AVOA analysis is equivalent to the first-order Born approximation. However, AVOA analysis can be applied only in a laterally uniform medium, whereas the Born-approximation does not pose any restriction on the subsurface structure. I have developed an inversion scheme based on a ray-Born approximation to invert for the fracture parameters. Best results are achieved when both vertical and horizontal components of the seismic data are inverted simultaneously. I have also developed an efficient positivity constraint which forbids the inverted fracture parameters to be negative in value. I have implemented the inversion scheme in the frequency domain and I show, using various numerical examples, that all frequency samples up to the Nyquist are not required to achieve desired inversion results.
48

Numerical simulation of shear instability in shallow shear flows

Pinilla, Camilo Ernesto. January 2008 (has links)
The instabilities of shallow shear flows are analyzed to study exchanges processes across shear flows in inland and coastal waters, coastal and ocean currents, and winds across the thermal-and-moisture fronts. These shear flows observed in nature are driven by gravity and governed by the shallow water equations (SWE). A highly accurate, and robust, computational scheme has been developed to solve these SWE. Time integration of the SWE was carried out using the fourth-order Runge-Kutta scheme. A third-order upwind bias finite difference approximation known as QUICK (Quadratic Upstream Interpolation of Convective Kinematics) was employed for the spatial discretization. The numerical oscillations were controlled using flux limiters for Total Variation Diminishing (TVD). Direct numerical simulations (DNS) were conducted for the base flow with the TANH velocity profile, and the base flow in the form of a jet with the SECH velocity profile. The depth across the base flows was selected for the' balance of the driving forces. In the rotating flow simulation, the Coriolis force in the lateral direction was perfectly in balance with the pressure gradient across the shear flow during the simulation. The development of instabilities in the shear flows was considered for a range of convective Froude number, friction number, and Rossby number. The DNS of the SWE has produced linear results that are consistent with classical stability analyses based on the normal mode approach, and new results that had not been determined by the classical method. The formation of eddies, and the generation of shocklets subsequent to the linear instabilities were computed as part of the DNS. Without modelling the small scales, the simulation was able to produce the correct turbulent spreading rate in agreement with the experimental observations. The simulations have identified radiation damping, in addition to friction damping, as a primary factor of influence on the instability of the shear flows admissible to waves. A convective Froude number correlated the energy lost due to radiation damping. The friction number determined the energy lost due to friction. A significant fraction of available energy produced by the shear flow is lost due the radiation of waves at high convective Froude number. This radiation of gravity waves in shallow gravity-stratified shear flow, and its dependence on the convective Froude number, is shown to be analogous to the Mach-number effect in compressible flow. Furthermore, and most significantly, is the discovery from the simulation the crucial role of the radiation damping in the development of shear flows in the rotating earth. Rings and eddies were produced by the rotating-flow simulations in a range of Rossby numbers, as they were observed in the Gulf Stream of the Atlantic, Jet Stream in the atmosphere, and various fronts across currents in coastal waters.
49

Pilot program to assess seismic hazards of the Granite City, Monks Mound, and Columbia Bottom quadrangles, St. Louis Metropolitan area, Missouri and Illinois

Karadeniz, Deniz, January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Accompanying "this dissertation is a CD-ROM, which contains site amplification and seismic hazard results for each grid point (1974 points) considered in the study. The results have prepared as .txt files. The CD-ROM also contains the maps generated from these estimated results. The maps are prepared as .png files." Title from title screen of thesis/dissertation PDF file (viewed January 28, 2008) Includes bibliographical references (p. 249-269).
50

Passive Elastography : Tomography and Mechanical Characterization of Biological Tissue / Elastographie passive : application à la tomographie et la caractérisation mécanique des tissus biologiques

Zorgani, Ali 25 October 2016 (has links)
Les travaux menés lors de cette thèse portent sur le développement d'une approche passive d'Elastographie, l'imagerie de l'élasticité des tissus mous. Inspirée des techniques de corrélation de bruit sismique développée en séismologie, et du retournement temporel en acoustique. L'Elastographie passive utilise des ondes de cisaillement naturellement présentent dans le corps humain pour extraire les propriétés mécaniques des tissues biologiques. La faisabilité de cette approche passive est démontrée pour divers applications. En ultrason, un échographe à cadence lente ont été utilisés pour le guidage du traitement par ultrason à haut intensité dans une étude préclinique. Puis l'utilisation d'un échographe ultra-rapide pour la reconstruction des cartes de vitesses dans des gels calibrés ainsi que in-vivo. L'Elastographie passive par résonnance magnétique a été également mise en place pour imager les mouvements naturels dans le cerveau d'un volontaire sain et la réalisation d'une tomographie de longueurs d'ondes. En optique pour des applications en ophtalmologie ou en dermatologie, la faisabilité de l'Elastographie passive par cohérence optique a été démontrée dans un gel puis in-vivo dans l'œil d'une souris pour des. Puis une preuve du concept d'un dispositif d'imagerie d'ondes de surfaces complètement optique été testé dans des gels plan, courbé, isotrope ou anisotrope. Finalement, la limite de la résolution de l'Elastographie passive par ultrason est évaluée / The aim of this thesis was the development of a new approach called passive elastography. This approach is inspired from noise correlation methods well developed in seismology and time reversal technics in acoustics. Passive elastography uses shear waves naturally induced in the human body to extract its mechanical properties of soft tissue. The feasibility of this method was tested in several applications. First in ultrasound, slow frame rate ultrasound scanner was used to monitor high intensity focused ultrasound treatment on porcine pancreas. Then, an ultrafast ultrasound scanner was used to retrieve shear wave speed map in a calibrated phantom and in-vivo. Second, Magnetic resonance elastography was implemented to image natural motion in the brain of healthy volunteers and conduct shear wavelength tomography. Third, of ophthalmological and dermatological applications, optical coherence passive elastography was tested in a phantom and a cornea of healthy mouse. Also, a fully optical setup was established to image surface wave for elastography applications. Finally, the resolution limit of elastography was measured using and ultrasound ultrafast scanner

Page generated in 0.0406 seconds