• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 14
  • 14
  • 14
  • 10
  • 9
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Movement, growth and mortality of brook trout within the Hazel River, Shenandoah National Park

Bryan, Roger D. 10 November 2009 (has links)
Density and standing stock of brook trout within the Hazel River, Shenandoah National Park, declined sharply between 1982 and 1989. Most of the reduction occurred within the middle and lower reaches, where density of brook trout declined 66% and 920/0, respectively. This study characterized the movement, growth, and mortality of the Hazel River brook trout population in 1989-1990 and examined the role of these phenomena in the recovery of that population. Physical habitat appeared excellent throughout the stream, with adequate pools, cover, and spawning substrate in all sections. Results from visible implant tag recoveries established that the majority (60%) of adult and yearling trout were sedentary during the one year study period. Brook trout exhibiting movement tended to move upstream during the fall over relatively short distances ( < 250 m). Movements of up to 700 m (up- and downstream) were observed in less than 5% of post-juvenile trout. Young-of-the-year (YOY) trout moved more frequently than other age groups and tended to move downstream; they are probably the primary vehicle of downstream recolonization. Growth and condition of Hazel River brook trout were typical of other streams within Shenandoah National Park. Poor growth occurred during the summer months, which is typical of southeast stream trout populations. Generally, growth was higher in areas where density was lowest. Estimated mortality over summer was highest (400/0) for yearling and adult trout within the upper reaches. Despite closure of the Hazel River to angling for two years, its brook trout population remained depressed in 1989. The study demonstrated that recovery of depleted trout stocks through intrastream migration may be slow. Reasons for the continued depression of the brook trout population in the Hazel River may include predation by American eels, illegal angIer harvest, the sedentary nature of stream-dwelling trout, or a combination of these factors / Master of Science
12

Quantifying macroinvertebrate structural and functional response to stream acidification and subsequent recovery in Shenandoah National Park

McIntyre, Kelly Christine 14 July 2021 (has links)
Acid rain alters freshwater pH and ion composition, preventing organisms from performing essential bodily functions causing mortality. Macroinvertebrate communities in acidified streams are characterized by species loss in response to physiological stress and altered food quality resulting from the degradation of microbial (e.g., fungi on leaves) communities. Although freshwater acidification in the U.S. is lessening following reduced industrial emissions, little is known about macroinvertebrate recovery. Often, biotic recovery is assessed by looking at changes to what taxa and how many individuals are present in the community (e.g., richness, density). While providing a metric for change, changes in "who" is there (i.e., richness) doesn't necessarily tell us changes in "what" they are doing (i.e., function). The relationship between diversity and function requires linking a "who" to their "what" with direct measurements or as indicated by their traits. Traits are attributes of an organism that aggregate biological, morphological, and behavioral information and may relate to their success in a particular environment. For example, taxa that cannot survive with stream drying (not desiccation resistant) may only be found in streams with permanent water. Trait-based taxonomic metrics could bridge "who" and "what" and expand the impact of stream recovery assessments. My objective was to assess trends over time in water chemistry and macroinvertebrate taxonomic and trait richness and density following reduced industrial emissions. To do so, I studied two long-term data sets from Shenandoah National Park to assess trends in water chemistry and macroinvertebrate taxa and trait composition over a 30-year period to identify taxa and traits that are sensitive to acidification. I also measured how much biomass macroinvertebrates produced in a year (i.e., secondary production) in two streams (1 acidified; 1 not acidified) to determine taxa and traits that are functionally sensitive to acidification. I used these structural and functional measures of sensitivity to determine if changes in trait richness or density predict changes in the function of that trait (e.g., secondary production). Changes over time show that streams have some recovery from acid rain with increasing stream pH and a greater number of taxa and traits present in the community. Changes in taxa were greater than changes in traits over time. While this result was expected as multiple taxa make up each trait category, it may also suggest minimal or delayed functional recovery over time. Still, macroinvertebrate secondary production indicated that function did differ with differences in acidification. Therefore, observed small changes in traits over time mirror prior studies that found other variables, such as competition for food or space, delay or inhibit macroinvertebrates from returning to the recovering streams. Additionally, there were similarities between traits changing over time and the secondary production of traits that differed between more and less acidified streams. Taxa characterized by long life spans and large body size (e.g., semivoltine, long adult life, slow seasonal development) appeared to be the most sensitive to changes in acidification. These findings suggest that some compositional attributes, like taxonomic or trait richness, may predict functional changes measured as secondary production while others, such as density, do not. / Master of Science in Life Sciences / Acid rain causes the acidification of freshwater stream water observed as decreased stream pH and decreased ability of watershed soils to neutralize or "soak up" acidic inputs before they enter the stream. These changes in stream water chemistry inhibit the ability of aquatic animals to perform essential bodily functions resulting in mortality. The total number of aquatic insect taxa and total number of individuals in the community have been found to decrease in response to acidification. Although freshwater acidification is lessening following reduced industrial emissions, little is known about if and how aquatic insects can recover. Often, aquatic insect recovery is assessed through looking at changes to what taxa and how many individuals are present in the community. While providing a metric for change, changes in "who" is there (i.e., richness) doesn't necessarily tell us changes in "what" they are doing (i.e., function). The relationship between diversity and function requires linking a "who" to their "what". This is often done by assessing changes in the taxa present but also looking at how the composition of traits associated with those taxa also change. Traits or taxa-specific characteristics aggregate biological, morphological, and behavioral information and may relate to their ability to live in a given environment. For example, taxa that rely on filtering and consuming fine particles may only be found in faster flowing streams where they function to remove fine particulates. Trait-based assessments could link "who" and "what" to expand our understanding of how stream ecosystems change with a stressor. My objective was to assess recovery of streams in Shenandoah National Park following reduced industrial emissions. To do so, I studied two long-term (1987-2017) data sets from to assess trends in water chemistry and macroinvertebrate taxa and traits. This enabled me to determine "who" is changing in these streams over time. I also measured how much insect biomass s produced in a year (i.e., secondary production) in two streams (1 more acidic; 1 less acidic) to determine what taxa and traits alter "what" (e.g., secondary production) they are doing. I found that long-term trends indicate some recovery from acid rain with improving water quality and an increased number of insect taxa and traits present in the community over time. Changes in insect taxa were greater than changes in their traits suggesting that stream acidification did not greatly alter "what" the insects are doing greatly to begin with or that recovery may be delayed. In contrast, my secondary production study showed that "what" macroinvertebrates are doing does differ in more or less acidic streams. Therefore, our observed minimal changes in traits over time suggest that other variables, such as competition for food or space, delay or inhibit macroinvertebrates from returning to the recovering streams. Additionally, there were similarities between traits changing over time and traits that were different in the more or less acidic streams. Taxa characterized by long life spans and large body size (e.g., semivoltine, long adult life, slow seasonal development) appeared to be the most affected by differences or changes in stream water acidity. These findings suggest that changes in "who" can predict changes in "what" to some degree though static metrics of abundance do not always reflect the function of the taxa or community.
13

Characterization and analysis of the ambient aerosol species in the Shenandoah National Park and Manassas, Virginia regions

Widom, Stuart January 1982 (has links)
The examination of size distribution, composition and elemental concentration of the aerosol species in the Shenandoah National Park and Manassas, Virginia regions was investigated during a three month summertime period. The relationships between the above mentioned parameters along with prevalent meteorological patterns, emission sources and associated topography were used to determine the geographical origin, aerosol age, and numerous other chemical and physical characteristics of the ambient aerosol. Data for the study were obtained by ground based sampling of particulates and from in situ sampling from an airborne sampling platform. The need for continued surveillance along with improved methods of characterization of the ambient aerosol species is discussed. / Master of Science
14

Fire Regimes of the Southern Appalachian Mountains: Temporal and Spatial Variability and Implications for Vegetation Dynamics

Flatley, William 1977- 14 March 2013 (has links)
Ecologists continue to debate the role of fire in forests of the southern Appalachian Mountains. How does climate influence fire in these humid, temperate forests? Did fire regimes change during the transition from Native American settlement to Euro-American settlement? Are fire regime changes resulting in broad vegetation changes in the forests of eastern North America? I used several approaches to address these questions. First, I used digitized fire perimeter maps from Great Smoky Mountains National Park and Shenandoah National Park for 1930-2009 to characterize spatial and temporal patterns of wildfire by aspect, elevation, and landform. Results demonstrate that fuel moisture is a primary control, with fire occurring most frequently during dry years, in dry regions, and at dry topographic positions. Climate also modifies topographic control, with weaker topographic patterns under drier conditions. Second, I used dendroecological methods to reconstruct historical fire frequency in yellow pine (Pinus, subgenus Diploxylon Koehne) stands at three field sites in the southern Appalachian Mountains. The fire history reconstructions extend from 1700 to 2009, with composite fire return intervals ranging from 2-4 years prior to the fire protection period. The two longest reconstructions record frequent fire during periods of Native American land use. Except for the recent fire protection period, temporal changes in land use did not have a significant impact on fire frequency and there was little discernible influence of climate on past fire occurrence. Third, I sampled vegetation composition in four different stand types along a topographic moisture gradient, including mesic cove, sub-mesic white pine (Pinus strobus L.) hardwood, sub-xeric oak (Quercus L.), and xeric pine forests in an unlogged watershed with a reconstructed fire history. Stand age structures demonstrate changes in establishment following fire exclusion in xeric pine stands, sub-xeric oak stands, and sub-mesic white pine-hardwood stands. Fire-tolerant yellow pines and oaks are being replaced by shade-tolerant, fire sensitive species such as red maple (Acer rubrum L.) and hemlock (Tsuga canadensis L. Carr.). Classification analysis and ordination of species composition in different age classes suggest a trend of successional convergence in the absence of fire with a shift from four to two forest communities.

Page generated in 0.0937 seconds