• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Promoter analysis and identification of transcription factors in edible mushroom Lentinula edodes.

January 2006 (has links)
by Sham Lok To. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 143-171). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgement --- p.iv / Abbreviations --- p.v / Table of contents --- p.vi / List of figures --- p.ix / List of tables --- p.xi / Chapter Chapter One --- Literature Review --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.1.1 --- About L. edodes --- p.3 / Chapter 1.1.2 --- Nutritional and medicinal values of L. edodes --- p.4 / Chapter 1.1.3 --- Life cycle of L. edodes --- p.6 / Chapter 1.1.4 --- Environmental factors affecting fruiting body formation in L. edodes --- p.6 / Chapter 1.2 --- Molecular mechanisms of fruiting body development in L. edodes --- p.8 / Chapter 1.2.1 --- Expression profiling and identification of differentially expressed genes during fruiting --- p.8 / Chapter 1.2.2 --- Changing in membrane structure --- p.11 / Chapter 1.2.3 --- The signal transduction cascade --- p.12 / Chapter 1.3 --- Transformation in L. edodes and in other fungi --- p.14 / Chapter 1.3.1 --- Transformation of L. edodes --- p.14 / Chapter 1.3.2 --- Transformation in other fungi --- p.17 / Chapter 1.4 --- Bioinformatics tools for comparative promoter analysis --- p.22 / Chapter 1.5 --- Objectives and significance --- p.26 / Chapter Chapter Two --- Promoter analysis of differentially expressed genes (DEGs) in the fruiting body development in L. edodes --- p.27 / Chapter 2.1 --- Introduction --- p.27 / Chapter 2.2 --- Materials and methods --- p.29 / Chapter 2.2.1 --- Strains and cultivation conditions --- p.29 / Chapter 2.2.2 --- Genome walking of the 5' flanking region of the DEGs --- p.29 / Chapter 2.2.3 --- Annealing Control Primed (ACP) PCR --- p.31 / Chapter 2.2.4 --- Construction of genomic DNA library --- p.36 / Chapter 2.2.5 --- Nested PCR to amplify the target sequences --- p.37 / Chapter 2.2.6 --- Cloning and sequencing of the 5' flanking region --- p.38 / Chapter 2.2.7 --- Determination of transcription start site by the Neural Network algorithm --- p.39 / Chapter 2.2.8 --- Identification of putative transcription factor binding sites --- p.40 / Chapter 2.3 --- Results --- p.41 / Chapter 2.3.1 --- Construction of adaptor linked template for genome walking --- p.41 / Chapter 2.3.2 --- Sequence analysis and quality control --- p.41 / Chapter 2.3.3 --- Comparison of various methods in genome walking --- p.42 / Chapter 2.3.4 --- Promoter analysis --- p.42 / Chapter 2.4 --- Discussion --- p.58 / Chapter Chapter Three --- In-silico analysis of transcription factor binding sites and identification transcription factors expressed in L. edodes --- p.64 / Chapter 3.1 --- Introduction --- p.64 / Chapter 3.2 --- Material and methods --- p.67 / Chapter 3.2.1 --- Sequence manipulation and extraction of homologous ESTs from C. cinereus --- p.67 / Chapter 3.2.2 --- Extraction of 5' flanking region of the corresponding ESTs and promoter prediction --- p.67 / Chapter 3.2.3 --- Positional cloning of mating type factor A --- p.68 / Chapter 3.3 --- Results --- p.70 / Chapter 3.3.1 --- Sequence extraction and manipulation --- p.70 / Chapter 3.3.2 --- In-silico analysis of transcription factor binding sites in C. cinereus . --- p.70 / Chapter 3.3.3 --- Comparison of putative TFBS between L. edodes and C. cinereus --- p.71 / Chapter 3.3.4 --- Identification of transcription factors in L. edodes by positional cloning --- p.71 / Chapter 3.4 --- Discussion --- p.85 / Chapter Chapter Four --- Identification,expression profiling and promoter analysis of hydrophobin genes --- p.91 / Chapter 4.1 --- Introduction --- p.91 / Chapter 4.2 --- Material and methods --- p.92 / Chapter 4.2.1 --- Clustering and grouping of the hydrophobin ESTs --- p.92 / Chapter 4.2.2 --- Identification of the consensus sequences of the hydrophobin groups --- p.93 / Chapter 4.2.3 --- RNA Sources and Preparation --- p.93 / Chapter 4.2.4 --- Expression profiling of hydrophobin genes by RT-PCR --- p.95 / Chapter 4.2.5 --- Promoter cloning and analysis of hydrophobin genes --- p.95 / Chapter 4.3 --- Results --- p.97 / Chapter 4.3.1 --- Isolation and characterization of four newly found hydrophobin genes --- p.97 / Chapter 4.3.2 --- Expression levels of hydrophobins --- p.100 / Chapter 4.3.3 --- Promoter sequencing of the hydrophobins --- p.103 / Chapter 4.4 --- Discussion --- p.103 / Chapter Chapter Five --- Transformation of L. edodes --- p.110 / Chapter 5.1 --- Introduction --- p.110 / Chapter 5.2 --- Materials and methods --- p.112 / Chapter 5.2.1 --- Vectors and primers design --- p.112 / Chapter 5.2.2 --- Maxi-preparation of plasmids --- p.112 / Chapter 5.2.3 --- Cultural condition and optimization of protoplasts release --- p.114 / Chapter 5.2.4 --- PEG mediated transformation --- p.115 / Chapter 5.2.5 --- Electroporation mediated transformation --- p.116 / Chapter 5.2.6 --- PCR screening of regenerated transformant --- p.116 / Chapter 5.2.7 --- Particle bombardment --- p.117 / Chapter 5.3 --- Results --- p.121 / Chapter 5.4 --- Discussion --- p.128 / Chapter Chapter Six --- General discussions --- p.132 / References --- p.143
2

Endocytic pathway in mushroom development: role of Le.Rab7 and interacting proteins.

January 2006 (has links)
Lee Ming Tsung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 160-177). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.v / Abbreviations --- p.vi / Table of contents --- p.vii / List of Figures --- p.xii / List of Tables --- p.xiv / Chapter Chapter 1 --- Literature Review --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Nutritional values --- p.2 / Chapter 1.3 --- Medicinal values --- p.3 / Chapter 1.3.1 --- Anti-tumor effect --- p.3 / Chapter 1.3.2 --- Anti-viral and anti-caries effect --- p.4 / Chapter 1.3.3 --- Immunopotentiating effect --- p.4 / Chapter 1.3.4 --- Hypocholesterolaemic effect --- p.5 / Chapter 1.4 --- Life cycle and morphology --- p.6 / Chapter 1.5 --- Growth requirements --- p.9 / Chapter 1.5.1 --- Nutritional factors --- p.9 / Chapter 1.5.2 --- Physical and chemical factors --- p.10 / Chapter 1.6 --- Application of L. edodes --- p.12 / Chapter 1.7 --- Endocytosis --- p.13 / Chapter 1.7.1 --- Different types of endocytosis --- p.13 / Chapter 1.7.1.1 --- Phagocytosis --- p.14 / Chapter 1.7.1.2 --- Pinocytosis --- p.15 / Chapter 1.7.1.3 --- Receptor-mediated endocytosis --- p.15 / Chapter 1.7.2 --- The Endocytic Pathway --- p.17 / Chapter 1.7.3 --- Endocytosis in fungi --- p.20 / Chapter 1.7.4 --- Rab GTPases --- p.21 / Chapter 1.7.4.1 --- Control of the active and inactive state of Rab proteins --- p.22 / Chapter 1.7.4.2 --- Regulation of docking and fusion of membrane in endosomal trafficking --- p.23 / Chapter 1.7.4.3 --- Rab7 GTPase --- p.26 / Chapter 1.8 --- Aims of the project --- p.28 / Chapter Chapter 2 --- Protein-protein Interaction Study of Le.Rab7 by in vivo and in vitro Interaction Assay --- p.29 / Chapter 2.1 --- Introduction --- p.29 / Chapter 2.2 --- Materials and Methods --- p.36 / Chapter 2.2.1 --- Yeast two-hybrid screening --- p.36 / Chapter 2.2.1.1 --- Confirmation of the clones Le.Rab7-pGBK.T7 --- p.36 / Chapter 2.2.1.1.1 --- Bacterial transformation --- p.36 / Chapter 2.2.1.1.2 --- PCR screening for positive transformants --- p.38 / Chapter 2.2.1.1.3 --- Plasmid preparation and confirmation of transformants --- p.38 / Chapter 2.2.1.1.4 --- Sequencing --- p.39 / Chapter 2.2.1.2 --- Confirmation of Le.Rab7 protein expression in yeast --- p.40 / Chapter 2.2.1.2.1 --- Yeast transformation --- p.40 / Chapter 2.2.1.2.2 --- Yeast protein extraction --- p.40 / Chapter 2.2.1.2.3 --- Western Blotting --- p.41 / Chapter 2.2.1.3 --- Yeast Two-hybrid screening by Yeast-mating --- p.42 / Chapter 2.2.1.4 --- Identification of Preys --- p.44 / Chapter 2.2.1.4.1 --- PCR screening for clones grown on plates --- p.44 / Chapter 2.2.1.4.2 --- Colony lift filter assay --- p.45 / Chapter 2.2.1.4.3 --- Sequencing --- p.47 / Chapter 2.2.1.5 --- Confirmation of interaction by Co-transformation assay --- p.47 / Chapter 2.2.1.5.1 --- Plasmid preparation of positive clones --- p.47 / Chapter 2.2.1.5.2 --- Transformation and bacterial plasmid preparation --- p.48 / Chapter 2.2.1.5.3 --- Yeast two-hybrid screening by co-transformation --- p.48 / Chapter 2.2.1.5.4 --- Colony lift filter assay --- p.50 / Chapter 2.2.2 --- Rapid Amplification of cDNA 5'ends --- p.51 / Chapter 2.2.2.1 --- RNA preparation --- p.51 / Chapter 2.2.2.1.1 --- Strains and culture conditions --- p.51 / Chapter 2.2.2.1.2 --- RNA extraction --- p.51 / Chapter 2.2.2.2 --- 5' RACE --- p.52 / Chapter 2.2.2.2.1 --- RNA processing --- p.52 / Chapter 2.2.2.2.2 --- Reverse transcription --- p.53 / Chapter 2.2.2.2.3 --- Nested PCR for 5'RLM-RACE --- p.53 / Chapter 2.2.2.3 --- "Gel analysis of products, TA cloning of RACE product and sequencing" --- p.54 / Chapter 2.2.2.4 --- Cloning of full-length Le.Rab5 --- p.54 / Chapter 2.2.3 --- In vitro protein-protein interaction assay --- p.55 / Chapter 2.2.3.1 --- Plasmid extraction from E.coli --- p.55 / Chapter 2.2.3.2 --- In vitro translation --- p.56 / Chapter 2.2.3.3 --- In vitro co-immunoprecipitation --- p.56 / Chapter 2.3 --- Results --- p.57 / Chapter 2.3.1 --- Yeast two-hybrid analysis by yeast mating assay --- p.57 / Chapter 2.2.1.1 --- Confirmation of the clones Le.Ra67-pGBKT7 --- p.57 / Chapter 2.3.1.1.1 --- PCR screening for positive transformants --- p.57 / Chapter 2.3.1.1.2 --- Plasmid preparation and confirmation of transformants --- p.58 / Chapter 2.3.1.1.3 --- Sequencing --- p.59 / Chapter 2.2.1.2 --- Confirmation of protein expression in yeast --- p.60 / Chapter 2.3.1.2.1 --- Yeast transformation --- p.60 / Chapter 2.3.1.2.2 --- SDS-PAGE and Western blotting of Le.Rab7 in yeast --- p.61 / Chapter 2.2.1.3 --- Yeast two-hybrid screening by yeast mating assay --- p.62 / Chapter 2.2.1.4 --- Identification of Preys --- p.63 / Chapter 2.3.1.4.1 --- PCR screening for clones grown on plates --- p.63 / Chapter 2.3.1.4.2 --- Colony lift assay --- p.65 / Chapter 2.3.1.4.3 --- Sequencing --- p.67 / Chapter 2.3.2 --- Confirmation of interactions by co-transformation assay --- p.70 / Chapter 2.2.2.1 --- Yeast two-hybrid analysis by co-transformation assay --- p.70 / Chapter 2.2.2.2 --- Colony lift filter assay --- p.70 / Chapter 2.2.2.3 --- Selection of prey plasmids for in vitro binding assay --- p.72 / Chapter 2.3.3 --- Rapid amplification of cDNA ends (RACE) --- p.76 / Chapter 2.2.3.1 --- TA cloning of RACE product and sequencing --- p.76 / Chapter 2.2.3.2 --- Cloning of full-length Le.Rab5 --- p.79 / Chapter 2.3.4 --- In vitro protein-protein interaction assay --- p.80 / Chapter 2.4 --- Discussion --- p.82 / Chapter Chapter 3 --- Temporal and Spatial expression of Le.Rab7,Le.Rab5 and Le.RACKl --- p.87 / Chapter 3.1 --- Introduction --- p.87 / Chapter 3.2 --- Materials and Methods --- p.93 / Chapter 3.2.1 --- Northern blot analysis --- p.93 / Chapter 3.2.1.1 --- RNA fractionation by formaldehyde gel electrophoresis --- p.93 / Chapter 3.2.1.2 --- Northern blotting --- p.94 / Chapter 3.2.1.2.1 --- Transfer of RNAs --- p.94 / Chapter 3.2.1.2.2 --- Probe preparation --- p.95 / Chapter 3.2.1.2.3 --- "Hybridization, Stringency washes and Signal detection" --- p.96 / Chapter 3.2.2 --- Quantitative RT-PCR --- p.97 / Chapter 3.2.2.1 --- cDNA synthesis from different developmental stages --- p.97 / Chapter 3.2.2.1.1 --- RNA preparation extraction --- p.97 / Chapter 3.2.2.1.2 --- DNase I treatment --- p.97 / Chapter 3.2.2.1.3 --- Reverse transcription --- p.98 / Chapter 3.2.2.2 --- Real time PCR --- p.98 / Chapter 3.2.2.2.1 --- Primer design and verification --- p.98 / Chapter 3.2.2.2.2 --- Real time PCR reaction and data analysis --- p.100 / Chapter 3.2.3 --- In situ RNA-RNA hybridization --- p.101 / Chapter 3.2.3.1 --- Preparation of samples and probes --- p.101 / Chapter 3.2.3.1.1 --- Tissue preparation --- p.101 / Chapter 3.2.3.1.2 --- RNA probe synthesis --- p.101 / Chapter 3.2.3.2 --- Hybridization and Signal development --- p.102 / Chapter 3.2.3.3 --- Image viewing --- p.103 / Chapter 3.3 --- Results --- p.105 / Chapter 3.3.1 --- Northern blot analysis --- p.105 / Chapter 3.3.2 --- Quantitative RT-PCR assays --- p.109 / Chapter 3.3.3 --- In situ RNA-RNA hybridization --- p.113 / Chapter 3.4 --- Discussion --- p.119 / Chapter Chapter 4 --- Existence of endocytosis and Protein localization of Le.Rab7 in L. edodes --- p.123 / Chapter 4.1 --- Introduction --- p.123 / Chapter 4.2 --- Materials and Methods --- p.127 / Chapter 4.2.1 --- Tracing the endocytie pathway using FM4-64 dye --- p.127 / Chapter 4.2.1.1 --- Strains and culture conditions --- p.127 / Chapter 4.2.1.2 --- FM4-64 internalization in mycelium and gill tissue of L. edodes --- p.127 / Chapter 4.2.2 --- Drug treatment effect on the internalization of FM4-64 dye --- p.128 / Chapter 4.2.3 --- Double labeling with AM4-64 and anti-Le.Rab7 antibody --- p.129 / Chapter 4.2.3.1 --- Synthesis of Le.Rab7 antibody --- p.129 / Chapter 4.2.3.1.1 --- Customization of Le.Rab7 antiserum --- p.129 / Chapter 4.2.3.1.2 --- Validation of anti-Le.Rab7 polyclonal antiserum --- p.129 / Chapter 4.2.3.2 --- Double immunofluorescence labeling --- p.130 / Chapter 4.2.4 --- Immunohistochemistry of young and mature fruiting body --- p.131 / Chapter 4.2.4.1 --- Tissue preparation --- p.131 / Chapter 4.2.4.2 --- Immunohistochemical staining --- p.132 / Chapter 4.2.4.3 --- Image viewing --- p.133 / Chapter 4.3 --- Results --- p.134 / Chapter 4.3.1 --- Presence of endocytosis in L .edodes --- p.134 / Chapter 4.3.2 --- Validation of active transport of FM4-64 --- p.137 / Chapter 4.3.3 --- Dye internalization at specific structures in L. edodes --- p.138 / Chapter 4.3.4 --- Presence of Le.Rab7 protein in the endosomal structures along the endocytic pathway --- p.142 / Chapter 4.3.5 --- Presence of Le.Rab7 protein in the pre- and hymenophore of fruiting body --- p.145 / Chapter 4.4 --- Discussion --- p.148 / Chapter Chapter 5 --- General discussion --- p.152 / References --- p.160
3

Identification & characterization of differentially expressed genes in shiitake mushroom (Xiangggu) lentinula edodes. / Identification and characterization of differentially expressed genes in shiitake mushroom (Xiangggu) lentinula edodes / CUHK electronic theses & dissertations collection

January 2006 (has links)
Chum Wing Yan Winnie. / "August 2006." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 190-223). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese.
4

Identification and characterization of differentially expressed genes in dikaryons of lentinula edodes by cDNA microarray.

January 2004 (has links)
by Shih Sheung Mei. / Thesis submitted in: July 2003. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 206-215). / Abstracts in English and Chinese. / Abstract --- p.ii / Achnoledgements --- p.vi / Abbreviations --- p.viii / List of contents --- p.viv / List of tables --- p.xiii / List of figures --- p.xv / Chapter Chapter One --- Literature Review / Chapter 1.1 --- Introducation of Lentinula edodes --- p.1 / Chapter 1.1.1 --- Life cycle of Basidiomycete --- p.1 / Chapter 1.1.2 --- Differentially Expressed Genes in stages of Lentinula edodes --- p.3 / Chapter 1.2 --- Relationship of Monokaryons and Dikaryons in Basidiomycetes --- p.4 / Chapter 1.2.1 --- Mating Type Gene in Filamentous Fungi --- p.4 / Chapter 1.2.3 --- Dikaryon Formation and Homeodomain Proteins --- p.6 / Chapter 1.2.4 --- Clamp Connection formation in Dikaryon --- p.9 / Chapter 1.3 --- Stuctural Protein of Mushroom --- p.11 / Chapter 1.3.1 --- Hydrophobin --- p.11 / Chapter 1.3.1.1 --- General Introduction --- p.11 / Chapter 1.3.1.2 --- Structure of hydrophobin --- p.11 / Chapter 1.3.1.3 --- Formation of Disulphide bonds and Glycosylation --- p.12 / Chapter 1.3.1.4 --- Functions of Hydrophobins --- p.13 / Chapter 1.4 --- Genomics of filamentous fungi --- p.15 / Chapter 1.5 --- Genetic analysis of filamentous fungi --- p.18 / Chapter 1.6 --- Objectives of the Project --- p.20 / Chapter Chapter Two --- Identification of Differentially Expressed Genes in Dikaryons of Lentinula edodes by Microarray of Primordium Expressed Sequence Tags / Chapter 2.1 --- Introduction --- p.23 / Chapter 2.2 --- Materials and Methods --- p.27 / Chapter 2.2.1 --- Construction of EST database --- p.27 / Chapter 2.2.2 --- Construction of EST Microarray cDNA gene-chip --- p.27 / Chapter 2.2.2.1 --- Amplification of the primordium EST clones --- p.27 / Chapter 2.2.2.2 --- Purification of the amplified EST clones --- p.28 / Chapter 2.2.2.3 --- Spotting of the amplified EST clones onto chips --- p.29 / Chapter 2.2.3 --- Screening of the Differentially Expressed Genes in Dikaryons by Primordium Microarray --- p.31 / Chapter 2.2.3.1 --- Mycelium Cultivation and Preparation of Total RNA --- p.31 / Chapter 2.2.3.2 --- cDNA synthesis and labeling --- p.32 / Chapter 2.2.3.3 --- cDNA purification --- p.33 / Chapter 2.2.3.4 --- Probe Storage Conditions --- p.34 / Chapter 2.2.3.5 --- cDNA analysis --- p.35 / Chapter 2.2.3.6 --- Microarray hybridization --- p.37 / Chapter 2.2.3.7 --- Stringency washes --- p.39 / Chapter 2.2.3.8 --- Detection with TSA --- p.39 / Chapter 2.2.3.9 --- Microarray scanning and data anlysis --- p.41 / Chapter 2.3 --- Results --- p.45 / Chapter 2.3.1 --- Amplification of primordium ESTs --- p.45 / Chapter 2.3.2 --- Purification of PCR products --- p.45 / Chapter 2.3.3 --- Data Analysis of Microarray Data --- p.47 / Chapter 2.3.3.1 --- Generation of Primordium EST Microarray Image for analysis --- p.47 / Chapter 2.3.3.2 --- Normalization of the Data --- p.49 / Chapter 2.3.3.3. --- Transciption Profile of Dikaryon compared with Monokaryon --- p.79 / Chapter 2.3.3.4. --- Differentially Expression of Dikaryon L54 --- p.80 / Chapter 2.4 --- Discussion --- p.85 / Chapter Chapter Three --- Enrichment of Genes with Differentially Expression in Dikaryons by Construction of Full-length Subtractive Library / Chapter 3.1 --- Introduction of Subtraction Cloning --- p.93 / Chapter 3.2 --- Materials and Methods --- p.97 / Chapter 3.2.1 --- Construction of Full-length Dikaryotic Subtractive library --- p.97 / Chapter 3.2.1.1 --- Isolation of PolyA+ mRNA of Dikaryon for Subtraction --- p.97 / Chapter 3.2.1.2 --- Enrichment of Differentially Expressed Genes in Dikaryon L54 by Subtraction with Monokaryons A and B --- p.99 / Chapter 3.2.1.3 --- First-Strand cDNA Synthesis --- p.102 / Chapter 3.2.1.4 --- cDNA Amplification by Long-Distance PCR --- p.102 / Chapter 3.2.1.5 --- Proteinase K Digestion --- p.103 / Chapter 3.2.1.6 --- Sfi Digestion --- p.104 / Chapter 3.2.1.7 --- cDNA size fractionation by CHROMA SPIN-400 --- p.104 / Chapter 3.2.1.8 --- Determination of the Ligation Efficiency --- p.106 / Chapter 3.2.1.9 --- Ligation of cDNA to lamda TriplEx2 Vector --- p.107 / Chapter 3.2.1.10 --- Lamda-phage Packaging Reaction --- p.107 / Chapter 3.2.1.11 --- Titering the Unamplifled Library and Determining the Percentage of Recombinant Clones --- p.108 / Chapter 3.2.1.12 --- Library Amplification --- p.109 / Chapter 3.2.1.13 --- Conversion of λTriplEx2 Recombinant Clones to pTriplEx2 Recombinant Plasmids --- p.111 / Chapter 3.2.2 --- Screening of the Subtractive library --- p.114 / Chapter 3.2.2.1 --- Verification of the enrichment by Plaque Lifting hybridization --- p.114 / Chapter 3.2.2.1.1 --- Lifting the Plaques --- p.114 / Chapter 3.2.2.1.2 --- Synthesis of the Probes for Plaque Lift Hybridization --- p.115 / Chapter 3.2.2.1.3 --- Hybridization to the Membranes --- p.116 / Chapter 3.2.2.2 --- Screening the Subtractive library by Macroarray Hybridization --- p.117 / Chapter 3.2.2.2.1 --- Colony Picking by QPik System --- p.117 / Chapter 3.2.2.2.2 --- Gridding of Macroarray --- p.118 / Chapter 3.2.2.2.3 --- Filter Processing of Gridded Membrane --- p.119 / Chapter 3.2.2.2.4 --- Hybridization to the Macroarray Membrane --- p.120 / Chapter 3.3 --- Results and Discussion --- p.121 / Chapter 3.3.1 --- Enrichment of Differentially Expressed Genes in Dikaryon L54 by Subtraction with Monokaryons A and B --- p.121 / Chapter 3.3.2 --- Construction of the full-length subtractive library --- p.123 / Chapter 3.3.3 --- Conversion of A TriplEx2 Recombinant Clones to pTriplEx2 Recombinant Plamid --- p.124 / Chapter 3.3.4 --- Verification the Enrichment of Subtractive library by Plaque lifting Hybridization --- p.125 / Chapter 3.3.5 --- Screening of the Subtractive library by Macroarray --- p.125 / Chapter 3.4 --- Discussion --- p.126 / Chapter Chapter Four --- Identification of Genes with Differentially Expression in Dikaryons by Subtactive cDNA Library Microarray / Chapter 4.1 --- Introduction --- p.135 / Chapter 4.2 --- Materials and Methods / Chapter 4.2.1 --- Selection and Amplification of clonesin SubtractionLlibrary for Microarray screening --- p.140 / Chapter 4.2.2 --- PCR product Purification --- p.141 / Chapter 4.2.3 --- Generation of Subtractive Dikaryotic Library Microarray Chip --- p.142 / Chapter 4.2.4 --- Screening the Differentially Expressed Genesin Dikaryon L54 by the Subtraction Dikaryotic Library cDNA Microarray Analysis --- p.143 / Chapter 4.2.4.1 --- Preparation of Total RNA --- p.143 / Chapter 4.2.4.2 --- Synthesis and fluorescent labeling of total cDNA --- p.145 / Chapter 4.2.4.3 --- Purification of labeled cDNA --- p.146 / Chapter 4.2.4.4 --- Storage Condition of Probe --- p.147 / Chapter 4.2.4.5 --- Analysis of labeled total cDNA --- p.148 / Chapter 4.2.4.6 --- Microarray hybridization --- p.150 / Chapter 4.2.4.7 --- Stringency washes --- p.152 / Chapter 4.2.4.8 --- Detection with TSA --- p.153 / Chapter 4.2.4.9 --- Image generation and data analysis --- p.155 / Chapter 4.2.5 --- Sequence analysis of clones showing differentially expressed in dikaryons in microarray screening --- p.157 / Chapter 4.2.5.1 --- Single-pass partial sequencing of 3´ة-end of subtractive cDNA clones --- p.157 / Chapter 4.2.5.2 --- Compiling dikaryotic EST database --- p.158 / Chapter 4.2.6 --- Comparison microarray analysis with SAGE analysis of the differentially expressed genes --- p.159 / Chapter 4.3 --- Results --- p.161 / Chapter 4.3.1 --- Preparation of clones for microarray hybridization --- p.161 / Chapter 4.3.2 --- Screening the differentially expressed genesin dikaryon L54 by the subtractive dikaryotic library cDNA microarray analysis --- p.162 / Chapter 4.3.2.1 --- Image capture and microarray data analysis --- p.162 / Chapter 4.3.2.2 --- Comparision of dikaryon L54 with monokaryons A and B --- p.163 / Chapter 4.3.2.3 --- Sequenced and comparison of the differentially expressed genes in dikaryon --- p.166 / Chapter 4.3.3 --- Comparison microarray analysis with SAGE analysis of the differentially expressed genes --- p.169 / Chapter Chapter Five --- Conclusion and Future Perpectives --- p.198 / References --- p.206

Page generated in 0.0642 seconds