• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 12
  • 7
  • 3
  • 1
  • Tagged with
  • 106
  • 106
  • 32
  • 31
  • 17
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Investigation of Shock Wave Effects on Phase Transformation and Structural Modification of TiO$_2$ and Al$_2$O$_3$

Slama de Freitas, Ana Luiza 11 1900 (has links)
Titanium dioxide and aluminum oxide are conventional materials used in heterogeneous catalysis as catalyst support. The widely used crystalline phase of both supports is the metastable phase (anatase and γ-Al$_2$O$_3$) in which they possess a higher specific surface area compared to the thermodynamically stable phase (rutile and α-Al$_2$O$_3$). However, these phases have better thermal and mechanical stability than anatase and γ-Al$_2$O$_3$. A novel method to induce phase transformation and structural modification of crystalline materials is by applying shock waves. This study aims to experimentally investigate the effects of shock wave treatment on titania and alumina. A pressure-driven shock tube was used in this work to generate the shock waves. Two sets of experiments were carried out for TiO$_2$ and one for Al$_2$O$_3$. Titania samples were prepared in the form of pellets for the first set. Titania and alumina samples were maintained as powder for the second set of experiments. For titania, twenty shocks were applied at nominal temperature and pressure of ~ 1772 K and 23.3 bar in the first set of experiments, while thirty shocks of ~ 1572 K and 66 bar were applied in the second set of experiments. For alumina, twenty shock loadings were applied at the same conditions used for the second set of titania. Characterization techniques, such as XRD, Raman spectroscopy, TEM, SEM, XPS, and N$_2$ physisorption were employed on treated samples in order to understand the effects of shock wave treatment. Partial phase transformation was observed in shock treated TiO2 from Raman spectra and TEM images. Crystallite size reduction was observed in the first set of experiments, while increase in defects was observed by the enhanced Ti$^{+3}$ in XPS spectra in both sets of experiments. Partial phase transformation was also observed in shock treated Al$_2$O$_3$, when mixed with CNF (carbon nanofibers), from XRD patterns and confirmed with XPS. For alumina, TEM and SEM images showed the smallest particles in contact with carbon fibers, while the biggest particles exhibited agglomeration. Physisorption experiments showed a decrease of 40% in surface area and pore collapse.
22

Combustion Kinetic Studies of Gasolines and Surrogates

Javed, Tamour 11 1900 (has links)
Future thrusts for gasoline engine development can be broadly summarized into two categories: (i) efficiency improvements in conventional spark ignition engines, and (ii) development of advance compression ignition (ACI) concepts. Efficiency improvements in conventional spark ignition engines requires downsizing (and turbocharging) which may be achieved by using high octane gasolines, whereas, low octane gasolines fuels are anticipated for ACI concepts. The current work provides the essential combustion kinetic data, targeting both thrusts, that is needed to develop high fidelity gasoline surrogate mechanisms and surrogate complexity guidelines. Ignition delay times of a wide range of certified gasolines and surrogates are reported here. These measurements were performed in shock tubes and rapid compression machines over a wide range of experimental conditions (650 – 1250 K, 10 – 40 bar) relevant to internal combustion engines. Using the measured the data and chemical kinetic analyses, the surrogate complexity requirements for these gasolines in homogeneous environments are specified. For the discussions presented here, gasolines are classified into three categories: (i) Low octane gasolines including Saudi Aramco’s light naphtha fuel (anti-knock index, AKI = (RON + MON)/2 = 64; Sensitivity (S) = RON – MON = 1), certified FACE (Fuels for Advanced Combustion Engines) gasoline I and J (AKI ~ 70, S = 0.7 and 3 respectively), and their Primary Reference Fuels (PRF, mixtures of n-heptane and iso-octane) and multi-component surrogates. (ii) Mid octane gasolines including FACE A and C (AKI ~ 84, S ~ 0 and 1 respectively) and their PRF surrogates. Laser absorption measurements of intermediate and product species formed during gasoline/surrogate oxidation are also reported. (iii) A wide range of n-heptane/iso-octane/toluene (TPRF) blends to adequately represent the octane and sensitivity requirements of high octane gasolines including FACE gasoline F and G (AKI ~ 91, S = 5.6 and 11 respectively) and certified Haltermann (AKI ~ 87, S = 7.6) and Coryton (AKI ~ 92, S = 10.9) gasolines. To assess conditions where shock tubes may not be ideal devices for ignition delay measurements, this work also presents a detailed discussion on shock tube pre-ignition affected ignition data and the ignition regimes in homogeneous environments. The shock tube studies on pre-ignition and associated bulk ignition advance may help engines research community understand and control super-knock events.
23

Studies of Preignition in Homogeneous Environments

Figueroa Labastida, Miguel 06 1900 (has links)
Preignition is an ignition event that happens before it is expected to happen and, many times, where it is not expected to happen. Understanding this phenomenon is of great importance as it influences the design and operation of modern downsized boosted internal combustion engines. To gain a fundamental understanding of preignition, homogeneous reactors like shock tubes and rapid compression machines may be used to decipher the influence of fuel chemical structure, temperature, pressure, equivalence ratio and bath gas on preignition. In this thesis, a comprehensive study of the preignition tendency of various chemical systems is presented. Firstly, renewable fuels like ethanol, methanol and a surrogate of conventional fuels, n-hexane, are characterized by traditional shock tube techniques, such as the measurements of ignition delay times and pressure-time histories, to identify thermodynamic conditions which promote non-ideal ignition behavior. Preignition pressure rise and the expedition of measured ignition delay times are identified as the indicators of non-homogeneous combustion. It is shown that preignition effects are more likely to be observed in mixtures containing higher fuel concentration and that preignition energy release is more pronounced at lower temperatures. High-speed imaging was implemented to visualize the combustion process taking place inside the shock tube. End-wall imaging showed that low-temperature ignition may be initiated from an individual hot spot that grows gradually, while high-temperatures ignition starts from many spots simultaneously which consume the reactive mixture almost homogeneously. Simultaneous lateral and endwall imaging was implemented in both low- and high-pressure shock tube facilities. All tested fuels exhibited localized ignition at low temperatures, and methanol showed a higher propensity than ethanol to ignite far from the endwall. Imaging experiments were also performed in a rapid compression machine to understand preignition at lower temperatures. Herein, ethanol showed non-homogeneous ignition while iso-octane and diethyl ether exhibited homogeneous ignition at the low-temperature conditions. Various criteria for the onset of preignition were tested against experimental observations to propose an adequate predictor of non-ideal ignition phenomena in practical applications. A non-dimensional number, relating the ignition delay sensitivity and laminar flame speed of the mixtures, was found to be the best criterion to elucidate ignition regimes.
24

Blast Performance of Reinforced Concrete Columns Protected by FRP Laminates

Kadhom, Bessam January 2016 (has links)
Recent terrorist attacks on critical infrastructures using car bombs have heightened awareness on the needs for blast resistance of structures. Blast design of civilian buildings has not been a common practice in structural design. For this reason, there is now an urgent need to mitigate the potentially devastating effects of blast shock waves on existing structures. The current research project, the results of which are reported in this dissertation, aims to expand knowledge on blast resistance of reinforced concrete building columns, while developing a technology and design procedure for protecting critical buildings columns against the damaging effects of impulsive blast loads through the use of externally applied fibre-reinforced polymer (FRP) jackets of different material architecture. The research project has a significant experimental component, with analytical verifications. A total of thirty two reinforced concrete columns were experimentally investigated under the effects of simulated blast loads using the University of Ottawa Shock Tube. Column dimensions were 150 mm x 150 mm in cross section and 2438 mm in length. Each concrete column was reinforced longitudinally with four 10M rebars which were tied laterally with 6.3 mm closed steel hoops, spaced at 37.5 mm and 100 mm c/c, representing seismic and non-seismic column details, respectively. The experimental research had two phases. Phase-I (sub-study) included blast tests of eight as-built, seismically detailed columns. The behaviour of these columns was explored under single and multiple blast shots, with and without the application of pre-blast axial loads. Phase-II (main-study) included column tests of different carbon FRP (CFRP) designs to investigate the significance of the use of different CFRP column jacket designs on dynamic response of twenty four seismic and non-seismic RC columns. Analytical investigation was conducted to assess and verify the significance of experimentally investigated parameters on column response. These included the use of Single-Degree-of-Freedom (SDOF) dynamic inelastic analysis, generation of dynamic resistance functions, the effects of variable axial loads, different plastic hinge lengths and the influence of secondary moments (P- moments) on column behaviour. The results indicate that the loading history has effects on column response, with multiple shots reducing column stiffness, and affecting dynamic response of columns relative to single blast shots of equivalent magnitude. The effect of concrete strength within the normal-strength concrete range is to increase strength and decrease deformations. Columns with CFRP jackets have considerable improvements in column deformability, with additional increases in column strength. The CFRP laminate design influences performance, with jackets having fibres in ±45o orientation especially improving column ductility and increasing plastic hinge lengths, thereby permitting redistribution of stresses and dissipating blast energy. Axial gravity loads vary during blast loads and can affect column strength. It was shown that SDOF dynamic inelastic analysis does capture key structural performance parameters in blast analysis. The consideration of experimentally observed parameters in column analysis; including the influence of CFRP design and associated change in plastic hinge length, variable axial load during response, and secondary moment (P- moments) result in significant improvements in the accuracy of blast analysis. The experimental results and the suggested improvements to the SDOF analysis technique can be used to implement a performance-based design approach recommended as part of the current research project for design of CFRP protection systems for concrete columns.This research project was conducted jointly by the National Research Council Canada (NRC) and the University of Ottawa.
25

Experimental and kinetic modeling study of isoprene oxidation

Zhou, Chengyu 11 May 2023 (has links)
Rapid consumption of energy storage and serious environmental pollution demand more advanced combustion strategies and more renewable fuels. Development of chemical kinetic models and suitable selection of fuels are key factors in evolving and optimizing new engine and combustion concepts. Alkenes are typical composition of gasoline as well as typical intermediates in the oxidation of larger alkanes and alcohol, while isoprene is one of the important alkenes impacting both the atmospheric pollution and energy depletion. Isoprene is one of the most important species in the atmosphere chemistry, dominating the carbon flux emitted by vegetation and accounting for forty percent of non-methane biogenic emissions globally. Isoprene has been recognized not only as a noteworthy precursor to polycyclic aromatic hydrocarbons but also as a promising fuel additive. Isoprene has been extensively investigated in the atmosphere chemistry, but its role as a critical diolefin in combustion chemistry has received less attention. Only A few researchers studied isoprene chemistry by carrying out pyrolysis experiments and theoretical calculations. To better understand the combustion chemistry of isoprene, this work presents a detailed experimental and kinetic modeling investigation. This study explored the chemical kinetics of isoprene oxidation in ignition delay times and speciation measurements. Our shock tube experiments for ignition delay times covered the temperatures of 680 – 1470 K, pressures of 1 – 30 bar, and equivalence ratios of 0.5 – 2. We measured laser-based time-resolved CO speciation in a low-pressure shock tube at temperatures of 900 – 1470 K, pressures of 1 and 4 bar, and equivalence ratios of 0.5 and 1. Major species concentrations were measured in a jet-stirred reactor at 680 – 1280 K, 1 bar, and φ = 0.5 – 2. Afterwards, we used 1,3-butadiene as a basis to develop fuel-specific isoprene sub-mechanism and coupled it with a C0-C5 core sub-mechanism. Finally we developed a comprehensive kinetic model including 1585 species and 6884 reactions and achieved a good agreement between the model’s predictions and the experiments. To our knowledge, this study is the first comprehensive effort to describe the process and provides valuable insights into isoprene oxidation. The work reported in the thesis also facilitates the better understanding of combustion chemistry of diolefins.
26

Shock-tube Investigation Of Ignition Delay Times Of Blends Of Methane And Ethane With Oxygen

Walker, Brian Christopher 01 January 2007 (has links)
The combustion behavior of methane and ethane is important to the study of natural gas and other alternative fuels that are comprised primarily of these two basic hydrocarbons. Understanding the transition from methane-dominated ignition kinetics to ethane-dominated kinetics for increasing levels of ethane is also of fundamental interest toward the understanding of hydrocarbon chemical kinetics. Much research has been conducted on the two fuels individually, but experimental data of the combustion of blends of methane and ethane is limited to ratios that recreate typical natural gas compositions (up to ~20% ethane molar concentration). The goal of this study was to provide a comprehensive data set of ignition delay times of the combustion of blends of methane and ethane at near atmospheric pressure. A group of ten diluted CH4/C2H6/O2/Ar mixtures of varying concentrations, fuel blend ratios, and equivalence ratios (0.5 and 1.0) were studied over the temperature range 1223 to 2248 K and over the pressure range 0.65 to 1.42 atm using a new shock tube at the University of Central Florida Gas Dynamics Laboratory. Mixtures were diluted with either 75 or 98% argon by volume. The fuel blend ratio was varied between 100% CH4 and 100% C2H6. Reaction progress was monitored by observing chemiluminescence emission from CH* at 431 nm and the pressure. Experimental data were compared against three detailed chemical kinetics mechanisms. Model predictions of CH* emission profiles and derived ignition delay times were plotted against the experimental data. The models agree well with the experimental data for mixtures with low levels of ethane, up to 25% molar concentration, but show increasing error as the relative ethane fuel concentration increases. The predictions of the separate models also diverge from each other with increasing relative ethane fuel concentration. Therefore, the data set obtained from the present work provides valuable information for the future improvement of chemical kinetics models for ethane combustion.
27

Characterization Of A Hydrogen-based Synthetic Fuel In A Shock Tube

Flaherty, Troy 01 January 2009 (has links)
Shock-tube experiments were performed with syngas mixtures near atmospheric pressure with varying equivalence ratios behind reflected shock waves. Pressure and hydroxyl radical (OH*) emission traces were recorded and used to calculate ignition delay time for a single mixture at equivalence ratios of [phi ]=0.4, 0.7, 1.0, and 2.0 over a range of temperatures from 913-1803 K. The syngas mixture was tested at full concentration as well as with 98% dilution in Argon. The full concentration mixtures were used to compare ignition delay time measurements with the theoretical calculations obtained through the use of chemical kinetics modeling using the Davis et al. mechanism. The dilute mixtures were used to study the OH* emission profiles compared to those of the kinetics model. The model was in poor agreement with the experimental data especially at lower temperatures with an ignition delay difference of more than an order of magnitude. These ignition delay time data supplement the few existing data and are in relative agreement. The species profile comparison of OH* compared to the model also showed poor agreement, with the worst agreement at the highest temperatures. While the disagreements with ignition delay time and profile comparisons cannot be explained at this time, the data presented support other findings. The data provide additional information towards understanding this disagreement relative to syngas mixtures despite the relatively well known kinetics of the primary constituents Hydrogen and Carbon Monoxide.
28

Hypersonic Aero-Optic Measurements in a High-Pressure Shock Tube

McGaunn, Jonathan P 01 January 2023 (has links) (PDF)
The high-pressure shock tube facility (HiPER-STAR) at the University of Central Florida (UCF) is analyzed experimentally to demonstrate the practicality of hypersonic aero-optical testing in an impulse facility without the use of an expansion nozzle or acceleration tube. The investigation analyses driver gas blending with helium and hydrogen to raise the speed of sound ratio in an attempt to increase the Mach number for aero-optics testing. HiPER-STAR has a unique ability to withstand pressures up to 1000 atm and run in a double diaphragm configuration allowing for a significant pressure differential to be created between the driver and driven sections. Results from this study show that hydrogen and helium blending can drastically increase the maximum Mach number of HiPER-STAR; Mach numbers up to 15 were generated at a variety of altitudes. Experiment test time varied on shock velocity but was purely dependent on the arrival of the reflected shock wave to measurement locations. The aero-optics data that was collected and visually captured with a high-speed camera clearly shows beam aberration due to density gradients and a diminishing light intensity indicating that hypersonic aero-optical phenomenon can be captured reliably and repeatedly with a shock tube.
29

An Optimized Kinetics Model For Oh Chemiluminescence At High Temperatures And Atmospheric Pressures

Hall, Joel 01 January 2005 (has links)
Chemiluminescence from the OH(A-X) transition near 307 nm is a commonly used diagnostic in combustion applications such as flame chemistry, shock-tube experiments, and reacting-flow visualization. Measurements of the chemiluminescent intensity provide a simple, cost-effective, non-intrusive look at the combustion environment. The presence of the ultra-violet emission is often used as an indicator of the flame zone in practical combustion systems, and its intensity may be correlated to the temperature distribution or other parameters of interest. While absolute measurements of the ground-state OH(X) concentrations are well-defined, there is no elementary relation between emission from the electronically excited state (OH*) and its absolute concentration. Thus, to enable quantitative emission measurements, a kinetics model has been assembled and optimized to predict OH* formation and quenching at combustion conditions. Shock-tube experiments were conducted in mixtures of H2/O2/Ar, CH4/O2/Ar and CH4/H2/O2/Ar with high levels of argon dilution (> 98%). Elementary reactions to model OH*, along with initial estimates of their rate coefficients, were taken from the literature. The important formation steps follow. CH + O2 = OH* + CO (R0) H + O + M = OH* + M (R1) H + OH + OH = OH* + H2O (R2) Sensitivity analyses were performed to design experiments at conditions most sensitive to the formation reactions. A fitting routine was developed to express the key rate parameters as a function of a single rate, k1 at the reference temperature (1490 K). With all rates so expressed, H2/CH4 mixtures were designed to uniquely determine the value of k1 at the reference temperature, from which the remaining rate parameters were calculated. Quenching rates were fixed at their literature values. Comparisons to predictions of previously available models show marked improvement relative to the new shock-tube data. An approach for using this work in the calibration of further measurements is outlined taking examples from a recent ethane oxidation study. The new model qualitatively matches the experimental data over the range of conditions studied and provides quantitative results applicable to real combustion environments, containing higher-order hydrocarbon fuels and lower levels of dilution in air.
30

Investigation of Blast Wave Attenuation Using Aluminum Particles

Palavino, Kenji 01 January 2019 (has links)
Detonation is the supersonic mode of combustion that occurs in munitions (military explosives and high explosives). These munitions result in blast waves that are hazardous to human life and structures. As a result, there is a high desire to mitigate these blast waves. One such method is to surround the explosive with mitigants (liquid, granular, and cellular porous material). For the safe storing and use of munitions, it is crucial to study the explosive dispersal of mitigant, the ensuing blast wave attenuation, and specifically, the mechanisms underlying this interaction. Current research involving mitigant blast wave attenuation is conducted in many configurations. The study aims to evaluate one configuration, shock tubes with particle suspension. Blast waves are simulated in the form of detonations initiated by DDT (deflagration-to-detonation) with mitigants in the form of dispersed particles. These dispersed particles included aluminum oxide, Al2O3, and aluminum, Al. The flame-flow interactions are experimentally studied using Particle Image Velocimetry (PIV) and pressure transducers. The effect of particle suspension on blast waves is revealed, portraying a decrease in mitigation performance.

Page generated in 0.0419 seconds