Spelling suggestions: "subject:"shoot meristem"" "subject:"hoot meristem""
1 |
Effects of Short Shoot Number and Presence of an Apical Meristem on Rhizome Elongation, New Short Shoot Production, and New Rhizome Meristem Production of Thalassia Testudinum Banks and Solander Ex König Planting Units in Tampa Bay.Meads, Michael Vearl 01 January 2012 (has links)
Thalassia testudinum Banks and Solander ex König is the dominant seagrass in the Gulf of Mexico, Caribbean and the West Coast of Florida, yet little rhizome elongation, new short shoot production, or new rhizome meristem production data has been collected via direct measurement. A study of the rhizome growth of T. testudinum was completed in December 2004 in southern Tampa Bay that determined growth after 26.5 months. Two PVC planting frames each containing four rhizomes with 2 short shoots, two rhizomes with 4 short shoots, and two rhizomes with 8 short shoots were planted next to existing T. testudinum beds at 5 sites (n = 10 planting frames). The rhizome apical meristem was removed from half of each set of short shoot units on each planting frame. Plants initially lacking a rhizome meristem produced more new long shoot meristems than those planted with an intact meristem, and larger planting units produced more new rhizome meristems than smaller ones, P = 0.001 and P < 0.001, respectively.
The total number of rhizome meristems per planting unit (new meristems + initial meristem) was greater in plantings initially lacking a long shoot meristem in the 2, 4 and 8 short shoot size classes. Only the two short shoot plants benefited from an intact rhizome meristem at planting time, elongating 66.4 cm versus 60.4 cm for plants initially lacking a rhizome meristem at 26.5 months. In the 4 and 8 short shoot classes, plants that
lacked a rhizome meristem at planting outpaced those with a meristem, producing 192.1 and 277.9 for 4 and 8 short shoot plants compared to 120.9 cm and 177.7 cm for plants with a meristem during the same time period. The greatest growth rate increases were due to lateral branching on planting units that lacked a rhizome meristem in the two largest size classes (4 and 8 short shoots); the differences between plants with an intact rhizome meristem and those without with the size classes pooled did not prove to be statistically different, P = 0.112. Differences among the size classes were significant, however, P < 0.001. Analysis of new short shoots was analogous to the results for rhizome elongation, with the presence of an initial rhizome factor proving insignificant, P = 0.401, and the initial number of short shoots factor proving significant, P < 0.001.
The rhizome growth, new short shoot production, and new rhizome meristem production data determined by direct measurements in this study appear to be the first planting unit measurements for this species under natural conditions.
|
2 |
Mitochondrial complex I dysfunction enhances in vitro plant organogenesis / L'inhibition du complexe I mitochondrial améliore l'organogenèse végétale in vitroAissa Abdi, Fatima 28 May 2018 (has links)
La régénération in vitro est un processus complexe largement utilisé pour la multiplication végétative ainsi qu'en recherche fondamentale pour étudier l'organogenèse. Malgré les diverses applications de la caulogenèse in vitro, les mécanismes de régulation impliqués restent mal caractérisés. Avant le début de mon doctorat, nous avons identifié un mutant d'Arabidopsis thaliana chez lequel un défaut du complexe I de la chaîne de transport d'électrons mitochondriale (CTEm) entraîne une augmentation du taux de régénération comparé au sauvage, mesurée sur des cals issus de protoplastes. Au début de mon projet doctoral, j'ai confirmé le lien entre le dysfonctionnement respiratoire et l'augmentation des taux de régénération en utilisant un inhibiteur spécifique du complexe I appelé roténone. Pour comprendre ce phénomène, j'ai étudié les mécanismes moléculaires et biochimiques liant la respiration mitochondriale et l'organogenèse in vitro. J'ai analysé différents mutants affectés dans l'activité du complexe I et conclu que le retard de croissance qui en découle est positivement corrélé avec le taux de régénération. Pour comprendre comment les perturbations de la CTEm affectent la formation des bourgeons, j'ai comparé les profils d'expression des gènes dans des tissus mutants du complexe I et dans des cals traités avec la roténone. Les résultats obtenus montrent, d’une part, que le profil d’expression des gènes est différent chez le sauvage et chez les mutants du complexe I et, d’autre part, que la roténone induit un stress oxydatif, inhibe la prolifération cellulaire et module les régulations hormonales. J'ai confirmé que la réponse oxydative induite par la roténone est rapidement relayée dans le cytosol en utilisant un bio-senseur de l’état redox cellulaire. Nos résultats suggèrent un lien de causalité entre un stress oxydatif induit par des perturbations respiratoires et la hausse du taux de régénération. Nos travaux pointent vers des méthodes alternatives pour améliorer l'efficacité de l'organogenèse in vitro par inhibition transitoire d'activités mitochondriales. / In vitro shoot regeneration is a complex process routinely used for vegetative propagation and to study plant organogenesis. Despite multiple applications of in vitro shoot initiation, the regulatory mechanisms involved remain poorly understood. Prior to the beginning of my PhD thesis, we identified an Arabidopsis thaliana mutant in which a defect in the complex I of the mitochondrial electron transport chain (mETC) results in a higher shoot regeneration rate compared to wild type, measured on protoplast-derived calli. At the beginning of my PhD project, I confirmed the link between the respiratory defect and the shoot regeneration boost with a specific complex I inhibitor called rotenone. To understand this phenomenon, I investigated the molecular and biochemical mechanisms linking mitochondrial respiration and shoot organogenesis. For this purpose, I analyzed different mutants affected in the complex I activity and concluded that the resulting growth retardation is positively correlated with the regeneration rate. To understand how mETC perturbations promote shoot regeneration, I compared gene expression profiles in complex I mutant tissues and in calli treated with rotenone. Our data show, on the one hand, that gene expression profiles are different in complex I mutants and, on the other hand, that rotenone induces an oxidative stress, inhibits cell proliferation, and modulate hormonal regulations. I confirmed that the oxidative response induced by rotenone is rapidly relayed in the cytosol with a redox- sensitive biosensor. Altogether, our results suggest a causal link between an oxidative stress caused by respiratory impairments and shoot regeneration enhancement. Our findings point to alternative methods to promote in vitro organogenesis via transient inhibition of mitochondrial activities.
|
Page generated in 0.0668 seconds