1 |
Predicting shoreline response to wave and sea level trends.Corbella, Stefano. 31 October 2013 (has links)
In March 2007 the KwaZulu-Natal coastline was devastated by an extreme
storm event. There is international concern that such events are
associated with climate change. There is evidence of global changes
in climate but there is still uncertainty as to whether they are anthropogenic
or part of natural decadal (or longer) cycles. The increase in frequency and intensity of extreme storm events will impact on the sediment dynamics of coastlines and the associated risks need to be modelled and quantifed so that they can be included in coastal planning and management. Durban is a coastal city on the east coast of South Africa and has been used as a case study to identify trends in wave parameters and beach profile volumes. The correlation between profile erosion, waves and tides was explored using singular spectral analysis. The dependence between wave parameters was modelled using copulas. The decadal trends were introduced into these models using a nonstationary generalised extreme value distribution. Numerical models (SWAN, SBEACH, XBEACH) were used to transform the statistical model to near shore waves and estimate the associated erosion.
The copula model was used to investigate the relationship between
multivariate return periods and erosion return periods. Coastal defence
options were reviewed and those appropriate for Durban were identifed.
This study provides a review of Durban and Richards Bay's 18 years of
Waverider data. It presents wave parameter exceedance statistics and
wave height return periods for Durban. Durban's wave data showed
increasing trends in maximum significant wave heights, peak wave period,
storm event frequencies and a trend towards a more southerly mean wave direction. However, only the increase in peak period and wave direction was statistically significant. The trend in wave direction is considered a potential coastal hazard as it has the potential to increase the littoral drift by 1 % per annum. Durban's beach profiles have shown a long term erosion trend which is due to a combination of wave and sea level trends, and a reduction in sediment supply. The reduction in sediment supply from rivers was found to be both anthropogenic and natural. Storm, wave parameter and sea level trends were estimated to contribute more than 75 % to the total long term erosion. It was found that it takes an average of 2 years for a beach to recover to its pre-storm volume. Different types of coastlines recover at different rates and these recovery rates should be considered in risk assessments. A method for estimating future impacts due to storm and sea level trends has been proposed in the form of a non-stationary copula based statistical model. In general a bivariate return period of wave height and duration was found to approximate erosion return periods, while a method for estimating an analogous multivariate storm and erosion return period was developed. Geotextile sand filled containers were found to be a suitable coastal defence as they satisfy
social, environmental and political pressure. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.
|
2 |
Submerged shoreline sequences on the KwaZulu-Natal shelf : a comparison between two morphological settings.Salzmann, Leslee. January 2013 (has links)
Holocene shoreline sequences and associated shelf stratigraphy are described from a high gradient, high wave energy shelf offshore the central KwaZulu-Natal and northern KwaZulu-Natal coastlines. These are examined using high resolution single-channel seismic and multibeam bathymetric means in order to describe the shallow stratigraphy and seafloor geomorphology of each area. The development and preservation of two distinct planform shorelines at -100 m (northern KwaZulu-Natal) and -60 m (northern KwaZulu-Natal and central KwaZulu-Natal) is described. The shallow seismic stratigraphy of northern KwaZulu-Natal comprises three seismic units (Units 1-3) corresponding to calcarenite barriers (Unit 1), back barrier lagoonal sediments (Unit 2) and the contemporary highstand sediment wedge (Unit 3). At intervening depths between each shoreline the shelf is characterised by erosional surfaces that reflect ravinement processes during periods of slowly rising sea level. Where shorelines are not preserved, areas of scarping in the ravinement surface at depths coincident to adjoining shorelines are apparent. These areas represent rocky headlands that separated the sandy coastal compartments where the shorelines formed and are a function of the high gradient. In central KwaZulu-Natal where the shelf is notably wider and gentler, shoreline building was more intense. Five major seismic units are identified (Units 1-5) with several subsidiary facies. The formation of the -60 m barrier complex (Unit 2) in central KwaZulu-Natal was accompanied by the simultaneous formation of a back-barrier system comprising lake-lagoon depressions (Unit 3) and parabolic dune fields aligned to the local aeolian transport direction, formed on a widened coastal plain. On the seaward margins of the barrier, gully and shore platform features developed coevally with the barrier system. Several relict weathering features (Unit 4) are associated with the barrier and reflect similar processes observed in contemporary aeolianite/beachrock outcrops on the adjacent coastline. The two submerged shoreline sequences observed are attributed to century to millennial scale periods of stasis during which shoreline equilibrium forms developed and early diagenesis of beachrock and aeolianite occurred. These extensive phases of shoreline development are thought to have occurred during periods of stillstand or slowstand associated with the Bølling-Allerod Interstadial (~14.5 ka BP) and the Younger Dryas Cold Period (~12.7-11.6 Ka BP). Shoreline preservation in such an environment is considered unlikely as a result of intense ravinement during shoreline translation, coupled with the high energy setting of the KwaZulu-Natal shelf. Preservation of both the 100 m and 60 m shorelines occurred via overstepping where preservation was promoted by particularly rapid bouts of relative sea-level rise associated with meltwater pulses 1A and 1B (MWP-1A and -1B). This was aided by early cementation of the shoreline forms during stillstand. Differences in shelf setting have led to variations in the style of barrier preservation and associated transgressive stratigraphies between the central KwaZulu-Natal and northern KwaZulu-Natal shelves. The main differences include a much thicker post-transgressive sediment drape, higher degrees of transgressive ravinement and an overall simplified transgressive system’s tract (TST) architecture on the steeper and narrower continental shelf of northern KwaZulu-Natal. In comparison, the central KwaZulu-Natal shelf’s 60 m shoreline complex reflects more complicated equilibrium shoreline facets, large compound dune fields formed in the hinterland of the shoreline complex, higher degrees of preservation and a more complicated transgressive stratigraphy. / Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2013.
|
Page generated in 0.0536 seconds