• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FPGA Implementation of Short Word-Length Algorithms

Thakkar, Darshan Suresh, darshanst@gmail.com January 2008 (has links)
Short Word-Length refers to single-bit, two-bit or ternary processing systems. SWL systems use Sigma-Delta Modulation (SDM) technique to express an analogue or multi-bit input signal in terms of a high frequency single-bit stream. In Sigma-Delta Modulation, the input signal is coarsely quantized into a single-bit representation by sampling it at a much higher rate than twice the maximum input frequency viz. the Nyquist rate. This single-bit representation is almost exclusively filtered to remove conversion quantization noise and sample decimated to the Nyquist frequency in preparation for traditional signal processing. SWL algorithms have a huge potential in a variety of applications as they offer many advantages as compared to multi-bit approaches. Features of SWL include efficient hardware implementation, increased flexibility and massive cost savings. Field Programmable Gate Arrays (FPGAs) are SRAM/FLASH based integrated circuits that can be programmed and re-programmed by the end user. FPGAs are made up of arrays of logic gates, routing channels and I/O blocks. State-of-the-art FPGAs include features such as Advanced Clock Management, Dedicated Multipliers, DSP Slices, High Speed I/O and Embedded Microprocessors. A System-on-Programmable-Chip (SoPC) design approach uses some or all the aforementioned resources to create a complete processing system on the device itself, ensuring maximum silicon area utilization and higher speed by eliminating inter-chip communication overheads. This dissertation focuses on the application of SWL processing systems in audio Class-D Amplifiers and aims to prove the claims of efficient hardware implementation and higher speeds of operation. The analog Class-D Amplifier is analyzed and an SWL equivalent of the system is derived by replacing the analogue components with DSP functions wherever possible. The SWL Class-D Amplifier is implemented on an FPGA, the standard emulation platform, using VHSIC Hardware Description Languages (VHDL). The approach is taken a step forward by adding re-configurability and media selectivity and proposing SDM adaptivity to improve performance.

Page generated in 0.0472 seconds