• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High-Resolution Investigation of Event Driven Sedimentation: Response and Evolution of the Deepwater Horizon Blowout in the Sedimentary System

Larson, Rebekka A. 01 April 2019 (has links)
This Dissertation combines the investigation of the sedimentological impacts of the Deepwater Horizon (DwH) blowout event in the deep-sea benthos, with the refinement and advancement of methods and approaches for high-resolution investigations of events preserved in sedimentary records. An approach that combined, rapid collection of cores, a continued annual time series collection of cores, and high-resolution sampling and analyses, in particular short-lived Radioisotopes (SLRad), enabled the temporal resolution required to detect the sedimentary response to the short-duration DwH event, and evaluate post-event sedimentation patterns at a comparable time scale (months). The collection of 179 sediment cores from 80 sites between the fall of 2010 and 2016 included four sites that were utilized as an annual time-series collection to define the sedimentary response to the DwH blowout event and how the sedimentary system evolved/recovered post-event. High-resolution (2mm) sub-sampling was utilized to maximize the temporal resolution of analyses and age control using SLRad. The rapid collection of cores to define the immediate benthic impact(s), as well as the use of time-sensitive indicators of the event that may degrade over time, as well as indicators for very short time scale (months) sedimentation, such as 234Thxs. 234Thxs inventories and mass accumulation rates (MAR’s) were one of the most diagnostic characteristics of the sedimentary response. The DwH blowout event led to a Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) event that caused a depositional pulse to the seafloor. This was defined by increased sedimentation rates and the shutdown of bioturbation as indicated by 234Thxs inventories and MAR’s. The annual collection of sediment cores as a time-series allowed for continued high-resolution analyses and use of 234Thxs to determine post-event sedimentation rates and baselines on monthly time scales for direct comparison to the depositional pulse. Within ~one year sedimentation rates decreased and within three years site specific return of bioturbation occurred and sedimentation rates on monthly scale (234Thxs) stabilized. Also, within ~three years the sedimentary signature of the depositional pulse became undetectable with respect to sediment texture and composition possibly due to dilution of this indicator by mixing/bioturbation and/or compaction of the event layer. Without the use of high-resolution sampling and geochronological tools such as 234Thxs the depositional pulse would not have been detected in the sedimentary system. The continued use of these high-resolution methods allowed for further defining the magnitude of the sedimentary response to the DwH event as well as provide baseline sedimentation patterns at a monthly time scale. The annual time series defines the post-event evolution of the sedimentary system as well as the assessment of the post-depositional alterations that influence the integration and preservation of such sedimentation events in the sedimentary record. This includes the potential for re-mobilization of event sediments, potential re-exposure of ecosystems to contaminated sediments and redistribution of event sediments. Alternatively, burial and alteration of the sedimentary signature over time influences the preservation potential of sedimentation events such as DwH, with decreasing ability to detect events due to bioturbation, degradation of signature and compaction. The refinement of methodology and approaches, in particular short-lived radioisotope (SLRad) geochronology, allowed for the high-resolution determination of the sedimentary impacts of the DwH blowout event. In turn, the opportunity to investigate the DwH event in real time provided the opportunity to advance high-resolution methodologies in an applied fashion. Continued refinement of high-resolution approaches and methods, in particular geochronologies, will allow for the detection of short-duration and subtle sedimentary events in real time as well as in the sedimentary record. Through the application of such approaches and methods to real events, these methods can be further refined and assessed for their utility and limitations.
2

High-Resolution Event Stratigraphy of mm-Scale Laminated Sediments from Coastal Salt Ponds: St. John, US Virgin Islands

Larson, Rebekka Amie 01 January 2011 (has links)
A multi-proxy approach is utilized on mm- to cm-scale laminated sediment records in coastal salt ponds on St. John, U.S. Virgin Islands to characterize the sediments, identify their sources and depositional processes/events (heavy rainfall, tropical cyclones, tsunamis). Historical records are combined with high-resolution geochronology (short-lived radioisotopes, 210Pb, 137Cs, 7Be) and scanning elemental techniques (XRF and LA-ICP-MS) to link depositional events to how they are manifested in the sedimentary record. Volcanic rocks are the terrigenous sediment source and the sedimentary signature of terrigenous sediment in the geologic record consists of higher amounts of Al, Fe, Ti, Co, and Si, and is associated with terrigenous runoff due to rainfall events. A minimum threshold value of >2.0 mm per day (minimum to erode and transport terrigenous sediment downslope) of rainfall has been determined for the study area. The frequency of heavy rainfall events that exceed the threshold of >2.0 mm per day is significantly correlated to the amount of terrigenous sediment accumulation of the terrigenous indictor element Al measured by scanning LA-ICP-MS. There is a robust sedimentary record of terrigenous sediment runoff that is a function of the frequency of heavy rainfall events (exceed threshold). Variability in the sedimentary record reflects changes between periods of "wet" increased frequency of heavy rainfall events and "dry" decreased frequency of heavy rainfall events. Tropical cyclones and tsunamis can cause marine overwash into salt ponds leading to deposition of marine sediments. Elemental scans for Ca and Sr and overwash indicator elements are complicated by grain size effects of LA-ICP-MS techniques, as well the difficulty in differentiating between tropical cyclone overwash deposits and tsunami deposits. By defining the sedimentary signature for depositional events , geologic records can be interpreted to provide insight into the natural variability of these processes throughout geologic time for comparisons to the more recent anthropogenic time period. This study provides a framework that can be applied to other coastal environments on high-relief tropical islands, to compare local records, and provide information on regional processes controlling rainfall variability in tropical latitudes.

Page generated in 0.0415 seconds