• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 26
  • 11
  • 7
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 153
  • 153
  • 39
  • 35
  • 29
  • 29
  • 28
  • 27
  • 26
  • 24
  • 21
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An Analysis of one approximation algorithm for graph linearization

Althoubi, Asaad Y. 26 April 2017 (has links)
No description available.
22

EFFICIENT GROUP COMMUNICATION AND THE DEGREE-BOUNDED SHORTEST PATH PROBLEM

HELMICK, MICHAEL T. 02 July 2007 (has links)
No description available.
23

Optimal Control for a Two Player Dynamic Pursuit Evasion Game; The Herding Problem

Shedied, Samy Aly 06 February 2002 (has links)
In this dissertation we introduce a new class of pursuit-evasion games; the herding problem. Unlike regular pursuit evasion games where the pursuer aims to hunt the evader the objective of the pursuer in this game is to drive the evader to a certain location on the x-y grid. The dissertation deals with this problem using two different methodologies. In the first, the problem is introduced in the continuous-time, continuous-space domain. The continuous time model of the problem is proposed, analyzed and we came up with an optimal control law for the pursuer is obtained so that the evader is driven to the desired destination position in the x-y grid following the local shortest path in the Euler Lagrange sense. Then, a non-holonomic realization of the two agents is proposed. In this and we show that the optimal control policy is in the form of a feedback control law that enables the pursuer to achieve the same objective using the shortest path. The second methodology deals with the discrete model representation of the problem. In this formulation, the system is represented by a finite di-graph. In this di-graph, each state of the system is represented by a node in the graph. Applying dynamic programming technique and shortest path algorithms over the finite graph representing the system, we come up with the optimal control policy that the pursuer should follow to achieve the desired goal. To study the robustness, we formulate the problem in a stochastic setting also. We analyze the stochastic model and derive an optimal control law in this setting. Finally, the case with active evader is considered, the optimal control law for this case is obtained through the application of dynamic programming technique. / Ph. D.
24

Time Dynamic Label-Constrained Shortest Path Problems with Application to TRANSIMS: A Transportation Planning System

Kangwalklai, Sasikul 06 March 2001 (has links)
TRANSIMS (Transportation Analysis Simulation System) is part of a multi-track Travel Model Improvement Program sponsored by the U. S. Department of Transportation (DOT), and the Environmental Protection Agency (EPA). The main objective of this thesis is to enhance and implement a principal module in TRANSIMS, called the Route Planner Module. The purpose of the Route Planner Module is to find time-dependent label-constrained shortest paths for transportation activities performed by travelers in the system. There are several variations of shortest path problems and algorithms that vary by application, contexts, complexity, required data, and computer implementation techniques. In general, these variants require some combination of the following inputs: a network consisting of nodes and links, and a travel time function on each link, which could be a time-independent or a time-dependent function, where the time-dependent functions account for time-of-day delays resulting from actual travel conditions such as peak-hour congestion. The problem then seeks a shortest path between one or more origin-destination pairs. A new variant, introduced in the context of TRANSIMS and which is the focus of the present study, also specifies labels for each arc denoting particular modes of travel, along with strings of admissible labels that delineate the permissible travel mode sequences that could be adopted by the user in traveling from the origin to the destination of the trip. The technique adopted by TRANSIMS to identify a suitable travel route for any user is a variant of Dijkstra's procedure for finding shortest paths, which is suitably modified to accommodate time-dependent travel times and label sequence constraints. The underlying problem is referred to as a Time-Dependent Label-Constrained Shortest Path Problem. The main objective of this research is to improve upon this procedure and study its implementation in order to develop a more effective scheme for determining time-dependent label-constrained shortest paths as a practical routing tool in multimodal transportation networks. Specifically, we enhance the following features of this procedure: (a) We recommend a method to work implicitly with a certain composition graph G* that combines the transportation network with the admissible label-sequence graph. This graph G* captures all possible paths for a given single trip starting from the origin node and ending at the destination node, while conforming with the admissible mode string. (b) We use more modern partitioned shortest path algorithmic schemes to implement the time-dependent label-constrained procedure. (c) We introduce the notion of curtailing search based on various indicators of progress and projected travel times to complete the trip. Finally, computer programs in C++ are written to implement the proposed overall algorithm, and are applied to solve some real multimodal transportation network problems. The indicators used to evaluate the performance of the algorithm include (i) time taken for computation on the real network, (ii) quality of solution obtained, (iii) ease of implementation, and (iv) extensibility of the algorithm for solving other variants of the shortest path problem. The results exhibit that the proposed algorithm, even without the approximate curtailing of the search process, exhibits good performance in finding optimal routes for real multimodal transportation networks. Although the various heuristic curtailments result in only approximate solutions, typically, they run much faster than the exact algorithm for the intuitive reason that the shortest path tree developed grows more pointedly in the direction of the destination. Among the different strategies implemented, our results suggest that the scheme based on the geometric structure of the underlying network, using either a constant predictive term, or multiplying this term with a suitable exponential decay function, yields an attractive candidate for heuristically curtailing the search. / Master of Science
25

Routing and Scheduling of Electric and Alternative-Fuel Vehicles

January 2014 (has links)
abstract: Vehicles powered by electricity and alternative-fuels are becoming a more popular form of transportation since they have less of an environmental impact than standard gasoline vehicles. Unfortunately, their success is currently inhibited by the sparseness of locations where the vehicles can refuel as well as the fact that many of the vehicles have a range that is less than those powered by gasoline. These factors together create a "range anxiety" in drivers, which causes the drivers to worry about the utility of alternative-fuel and electric vehicles and makes them less likely to purchase these vehicles. For the new vehicle technologies to thrive it is critical that range anxiety is minimized and performance is increased as much as possible through proper routing and scheduling. In the case of long distance trips taken by individual vehicles, the routes must be chosen such that the vehicles take the shortest routes while not running out of fuel on the trip. When many vehicles are to be routed during the day, if the refueling stations have limited capacity then care must be taken to avoid having too many vehicles arrive at the stations at any time. If the vehicles that will need to be routed in the future are unknown then this problem is stochastic. For fleets of vehicles serving scheduled operations, switching to alternative-fuels requires ensuring the schedules do not cause the vehicles to run out of fuel. This is especially problematic since the locations where the vehicles may refuel are limited due to the technology being new. This dissertation covers three related optimization problems: routing a single electric or alternative-fuel vehicle on a long distance trip, routing many electric vehicles in a network where the stations have limited capacity and the arrivals into the system are stochastic, and scheduling fleets of electric or alternative-fuel vehicles with limited locations to refuel. Different algorithms are proposed to solve each of the three problems, of which some are exact and some are heuristic. The algorithms are tested on both random data and data relating to the State of Arizona. / Dissertation/Thesis / Ph.D. Industrial Engineering 2014
26

Signal-Aware Route Planning

Hultman, Tim January 2016 (has links)
Modern vehicles have an increasing number of advanced features requiring network coverage in order to function properly. In order to facilitate the requirements of such features and allow more advanced applications, we consider the possibility of planning routes that take signal strength into consideration. Previous work have shown the relationship between TCP throughput/goodput and signal strength. In this thesis signal-aware route planning is presented, implemented, and validated. Crowd-sourced map and signal data (3G) from two sources is used for building a signal coverage map. The signal and map data is validated in a field experiment, where routes were travelled while measuring the signal strength. The field experiment showed gains in signal characteristics when deviating from the shortest possible path. The average signal strength increased by 11 dBm between algorithms and the shortest possible path. Lastly, routes were planned for all possible sources and destinations in a given urban area. The results of this calculation confirms the patterns found in the field experiment.
27

Mathematical modelling of blood spatter with optimization and other numerical methods / Anetta van der Walt

Van der Walt, Anetta January 2014 (has links)
The current methods used by forensic experts to analyse blood spatter neglects the influence of gravitation and drag on the trajectory of the droplet. This research attempts to suggest a more accurate method to determine the trajectory of a blood droplet using multi-target tracking. The multi-target tracking problem can be rewritten as a linear programming problem and solved by means of optimization and numerical methods. A literature survey is presented on relevant articles on blood spatter analysis and multi-target tracking. In contrast to a more advanced approach that assumes a background in probability, mathematical modelling and forensic science, this dissertation aims to give a comprehensive mathematical exposition of particle tracking. The tracking of multi-targets, through multi-target tracking, is investigated. The dynamic programming methods to solve the multi-target tracking are coded in the MATLAB programming language. Results are obtained for different scenarios and option inputs. Research strategies include studying documents, articles, journal entries and books. / MSc (Applied Mathematics), North-West University, Potchefstroom Campus, 2014
28

Mathematical modelling of blood spatter with optimization and other numerical methods / Anetta van der Walt

Van der Walt, Anetta January 2014 (has links)
The current methods used by forensic experts to analyse blood spatter neglects the influence of gravitation and drag on the trajectory of the droplet. This research attempts to suggest a more accurate method to determine the trajectory of a blood droplet using multi-target tracking. The multi-target tracking problem can be rewritten as a linear programming problem and solved by means of optimization and numerical methods. A literature survey is presented on relevant articles on blood spatter analysis and multi-target tracking. In contrast to a more advanced approach that assumes a background in probability, mathematical modelling and forensic science, this dissertation aims to give a comprehensive mathematical exposition of particle tracking. The tracking of multi-targets, through multi-target tracking, is investigated. The dynamic programming methods to solve the multi-target tracking are coded in the MATLAB programming language. Results are obtained for different scenarios and option inputs. Research strategies include studying documents, articles, journal entries and books. / MSc (Applied Mathematics), North-West University, Potchefstroom Campus, 2014
29

Shortest Path Queries in Very Large Spatial Databases

Zhang, Ning January 2001 (has links)
Finding the shortest paths in a graph has been studied for a long time, and there are many main memory based algorithms dealing with this problem. Among these, Dijkstra's shortest path algorithm is one of the most commonly used efficient algorithms to the non-negative graphs. Even more efficient algorithms have been developed recently for graphs with particular properties such as the weights of edges fall into a range of integer. All of the mentioned algorithms require the graph totally reside in the main memory. Howevery, for very large graphs, such as the digital maps managed by Geographic Information Systems (GIS), the requirement cannot be satisfied in most cases, so the algorithms mentioned above are not appropriate. My objective in this thesis is to design and evaluate the performance of external memory (disk-based) shortest path algorithms and data structures to solve the shortest path problem in very large digital maps. In particular the following questions are studied:What have other researchers done on the shortest path queries in very large digital maps?What could be improved on the previous works? How efficient are our new shortest paths algorithms on the digital maps, and what factors affect the efficiency? What can be done based on the algorithm? In this thesis, we give a disk-based Dijkstra's-like algorithm to answer shortest path queries based on pre-processing information. Experiments based on our Java implementation are given to show what factors affect the running time of our algorithms.
30

Caminhos mínimos com recursos limitados / Resource constrained shortest path

Uchoa, Joel Silva 14 November 2012 (has links)
O problema de caminhos mínimos (SP shortest path problem) é frequentemente colo- cado em prática em uma grande variedade de aplicações em diversas áreas. Nessas aplicações geralmente se deseja realizar algum tipo de deslocamento ou transporte entre dois ou mais pontos específicos em uma rede. Tal ação deve ser executada de forma ótima em relação a algum critério, por exemplo o menor custo possível, ou o menor gasto de tempo ou o máximo de confiabilidade/segurança. Na prática, muitas vezes não desejamos apenas o menor custo ou o menor tempo, mas desejamos otimizar uma combinação de diferentes critérios, por exemplo, um caminho que seja rápido e barato. Como não é possível otimizar sobre todos os critérios de uma só vez, nós escolhemos um dos critérios para representar a função custo, que será minimizada, e para os demais critérios representamos como recursos e definimos os limites que julgamos aceitáveis para o consumo de cada um desses recursos. Esta variação é cha- mada de problema de caminhos mínimos com restrições por recursos, ou como preferimos chamar, problema de caminhos mínimos com recursos limitados (RCSP resource constrained shortest path problem), o qual será o objeto de estudo neste trabalho. A adição de restrições por recursos no SP, infelizmente torna o problema NP-difícil, mesmo em grafos acíclicos, com restrições sobre um único recurso, e com todos os consu- mos de recursos positivos. Temos reduções dos famosos problemas N P-difíceis Mochila e Partição para o nosso problema. Em contextos diversos são encontrados problemas de cunho teórico e prático que po- dem ser formulados como problemas de caminhos mínimos com recursos limitados, o que nos motivou a estudá-lo a fim de desenvolver um trabalho que resumisse informações sufi- cientes para auxiliar pesquisadores ou desenvolvedores que tenham interesse no problema. Nós apresentamos aqui, uma detalhada revisão bibliográfica do RCSP, tendo como foco o desenvolvimento de algoritmos exatos para o caso onde possuímos um único recurso e a im- plementação e comparação dos principais algoritmos conhecidos, observando-os em situações práticas. / The problem of choosing a route to a trip, where we want minimize the distance of the path is a major problem in computing. In this basic form, this is the shortest path problem. But sometimes, besides the length we need to consider more parameters for selecting a good path. A common parameters to consider is the consumption of resources in a limited budget. A shortest path with these additional constraints is called resource constrained shortest path - RCSP. This paper has two main objectives: to present a literature review of the problem RCSP, focusing on exact algorithms for the case where we have a single resource, and implement and compare some algorithms, observing them in practical situations. The Shortest Path (SP) problem is among the fundamental problems of computer sci- ence. Its been deeply studied and subject of many publications. Also, many efficient solutions (polynomial time algorithms) are known for this problem. The SP is widely applied in many fields of science, not only computer science. These situations usually need to transport a load between two or more specific spots of a network. This action must be taken optimally regarding to some criterion, for instance the least cost, or the least time or maximum relia- bility. While new solutions for SP were presented, new demands were issued too, with new variations for the problem. One of these variations comes from the fact that, in a real scenario, a combination of many criteria must be optimized, for instance a path with least cost and least time. This problem is known as Multiobjective Shortest Path. Since its not possible to optimize all criteria at once, one of them is chosen to represent the cost function to be minimized and the others to represent resources with defined boundary. This variation, known as Resource Constrained Shortest Path (RCSP), was the object of the present study. By adding resource constraints, the SPbecomes N P-hard, even in acyclic graphs with only one resource constrained and all resource consumption being positive. There are reduc- tions from the famous NP-hard problems Knapsack and Partition to our problem. In many fields, are found theoretical and practical problems that may be expressed as a Resource Constrained Shortest Path Problem, which motivated us to study this problem in order to summarize enough information to researchers and developers involved with this problem. This paper presents a detailed bibliographic revision to RCSP, focusing on the development of exact algorithms for the case when there is only only one resource and on the implementation and comparison of the main known algorithms in practical situations.

Page generated in 0.0503 seconds