Spelling suggestions: "subject:"shtukas"" "subject:"stukas""
1 |
Cohomologie cuspidale des champs de Chtoucas / Cuspidal cohomology of stacks of ShtukasXue, Cong 07 June 2017 (has links)
Dans cette thèse, on construit le morphisme terme constant pour les groupes de cohomologie l-adique à supports compacts des champs classifiants des G-Chtoucas. Ensuite on définit la partie cuspidale de ces groupes de cohomologie et on montre qu'elle est de dimension finie. De plus, on montre que la partie cuspidale coïncide avec la partie Hecke-finie au sens rationnel. / In this thesis, we construct the constant term morphism for the l-adic cohomology groups with compact supports of the classifying stacks of the G-Shtukas. Then we define the cuspidal part of these cohomology groups and we prove that it is of finite dimension. Moreover, we show that the cuspidal part coincides with the Hecke-finite part in the rational sense.
|
2 |
Modularity of elliptic curves defined over function fieldsde Frutos Fernández, María Inés 30 September 2020 (has links)
We provide explicit equations for moduli spaces of Drinfeld shtukas over the
projective line with Γ(N), Γ_1(N) and Γ_0(N) level structures, where N is an effective
divisor on P^1 . If the degree of N is big enough, these moduli spaces are relative
surfaces.
We study how the moduli space of shtukas over P^1 with Γ_0(N) level structure,
Sht^{2,tr}(Γ_0(N)), can be used to provide a notion of motivic modularity for elliptic
curves defined over function fields. Elliptic curves over function fields are known to
be modular in the sense of admitting a parametrization from a Drinfeld modular curve,
provided that they have split multiplicative reduction at one place. We conjecture a
different notion of modularity that should cover the curves excluded by the reduction
hypothesis.
We use our explicit equations for Sht^{2,tr}(Γ_0(N)) to verify our modularity conjecture
in the cases where N = 2(0) + (1) + (∞) and N = 3(0) + (∞).
|
Page generated in 0.0274 seconds