• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Facies, Sequence Framework, and Evolution of Rudist Buildups, Shu'aiba Formation, Saudi Arabia

Al-Ghamdi, Nasser Mohammad 12 June 2006 (has links)
The Cretaceous (Early Aptian) Shu'aiba Formation, Shaybah field, Saudi Arabia, is 60 km long by 12 km wide and 150 m thick, and is a giant carbonate reservoir. It formed on a regional carbonate ramp bordering an intrashelf basin. The succession consists of a composite sequence of seven high frequency sequences. Sequences 1 and 2 formed a deeper open platform of Palorbitolina-Lithocodium wackestone, with maximum flooding marked by planktic foram mudstone. Sequence 2 built relief over northern and southern blocks, separated by an intraplatform depression. They form the composite sequence TST. The remaining sequences developed a platform rimmed by rudist rudstone backed by rudist floatstone back-bank and lagoonal fine skeletal peloidal packstone; slope facies are fine skeletal fragmented packstone. Aggradational sequences 3 to 5 make up the composite sequence early highstand. Progradational sequences 6 and 7 are the composite sequence late highstand marking the deterioration of the Offneria rudist barrier and deposition of widespread lagoonal deposits, where accommodation may have been created by syn-depositional growth faulting that moved the northern block down. Shu'aiba deposition on the platform was terminated by long-term sea-level fall and karsting. The succession is dominated by approximately 400 k.y., 4th order sequences and 100 k.y. parasequences driven by long term eccentricity and short term eccentricity respectively, similar to the Pacific guyots of this age. This suggests that early Cretaceous climate may have been cooler and had small ice sheets and was not an ice-free greenhouse world. / Master of Science

Page generated in 0.1105 seconds