• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hypolimnetic Oxygenation: Coupling Bubble-Plume and Reservoir Models

Singleton, Vickie L. 29 April 2008 (has links)
When properly designed, hypolimnetic aeration and oxygenation systems can replenish dissolved oxygen in water bodies while preserving stratification. A comprehensive literature review of design methods for the three primary devices was completed. Using fundamental principles, a discrete-bubble model was first developed to predict plume dynamics and gas transfer for a circular bubble-plume diffuser. This approach has subsequently been validated in a large vertical tank and applied successfully at full-scale to an airlift aerator as well as to both circular and linear bubble-plume diffusers. The unified suite of models, all based on simple discrete-bubble dynamics, represents the current state-of-the-art for designing systems to add oxygen to stratified lakes and reservoirs. An existing linear bubble plume model was improved, and data collected from a full-scale diffuser installed in Spring Hollow Reservoir, Virginia (U.S.A.) were used to validate the model. The depth of maximum plume rise was simulated well for two of the three diffuser tests. Temperature predictions deviated from measured profiles near the maximum plume rise height, but predicted dissolved oxygen profiles compared very well to observations. Oxygen transfer within the hypolimnion was independent of all parameters except initial bubble radius. The results of this work suggest that plume dynamics and oxygen transfer can successfully be predicted for linear bubble plumes using the discrete-bubble approach. To model the complex interaction between a bubble plume used for hypolimnetic oxygenation and the ambient water body, a model for a linear bubble plume was coupled to two reservoir models, CE-QUAL-W2 (W2) and Si3D. In simulations with a rectangular basin, predicted oxygen addition was directly proportional to the update frequency of the plume model. W2 calculated less oxygen input to the basin than Si3D and significantly less mixing within the hypolimnion. The coupled models were then applied to a simplified test of a full-scale linear diffuser. Both the W2 and Si3D coupled models predicted bulk hypolimnetic DO concentrations well. Warming within the hypolimnion was overestimated by both models, but more so by W2. The lower vertical resolution of the reservoir grid in W2 caused the plume rise height to be over-predicted, enhancing erosion of the thermocline. / Ph. D.
2

Predicting induced sediment oxygen flux in oxygenated lakes and reservoirs

Bierlein, Kevin Andrew 02 June 2015 (has links)
Bubble plume oxygenation systems are commonly used to mitigate anoxia and its deleterious effects on water quality in thermally stratified lakes and reservoirs. Following installation, increases in sediment oxygen flux (JO2) are typically observed during oxygenation and are positively correlated with the bubble plume gas flow rate. Studies show that JO2 is controlled by the thickness of the diffusive boundary layer (DBL) at the sediment-water interface (SWI), which is in turn controlled by turbulence. As a result, JO2 can be quite spatially and temporally variable. Accurately predicting oxygenation-induced JO2 is vitally important for ensuring successful oxygenation system design and operation. Yet despite the current understanding of physical and chemical controls on JO2, methods for predicting oxygenation-induced JO2 are still based on empirical correlations and factors of safety. As hypolimnetic oxygenation becomes more widely used as a lake management tool for improving and maintaining water quality, there is a need to move from the current empirically based approach to a mechanistic approach and improve the ability to predict induced JO2. This work details field campaigns to investigate and identify appropriate models of oxygen supply to the SWI and oxygen demand exerted from the sediment, with the intent to use these models to predict oxygenation-induced JO2. Oxygen microprofiles across the SWI and near-sediment velocity measurements were collected in situ during three field campaigns on two oxygenated lakes, providing simultaneous measurements of JO2 and turbulence. Field observations show that oxygenation can increase JO2 by increasing bulk hypolimnetic oxygen concentrations, which increases the concentration gradient across the SWI. Oxygenation can also enhance turbulence, which decreases the DBL thickness and increases JO2. Existing models of interfacial flux were compared to field measurements to determine which model best predicted the observed JO2. Models based on the Batchelor scale, friction velocity, and film-renewal theory all agree reasonably well with field observations in both lakes. Additionally, the oxygen microprofiles were used to fit a transient model of oxygen kinetics in lake sediment and determine the appropriate kinetic model. Oxygen microprofiles in both lakes can be described using zero-order kinetics, rather than first-order kinetics. The interfacial flux and sediment kinetic models are incorporated into a coupled bubble plume and 3-D hydrodynamic lake model, allowing for spatial and temporal variation in simulated JO2. This comprehensive model was calibrated and validated to field data from two separate field campaigns on Carvin's Cove Reservoir, Virginia. Simulated temperature profiles agreed quite well with field observations, while simulated oxygen profiles differed from observed profiles, particularly in the bottom 1 m of the water column. The model overestimates oxygen concentrations near the sediment, which results in higher simulated JO2 than was observed during the field campaigns. These discrepancies are attributed to oxygen-consuming chemical processes, such as oxidation of soluble metals, which are not accounted for in the hydrodynamic model. Despite this, the model is still able to capture the impact of bubble plume operation on JO2, as simulated JO2 is higher when the diffusers are operating. With some additional improvements to the water quality modeling aspects of the model, as well as further calibration and validation, the model should be able to reproduce observed JO2 provided oxygen concentrations near the SWI are accurately reproduced as well. The current work is an attempt to push toward a comprehensive lake oxygenation model. A comprehensive model such as this should improve the ability to predict oxygenation-induced JO2 and lead to improvements in the design and operation of hypolimnetic oxygenation systems. / Ph. D.

Page generated in 0.0267 seconds