• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of design factors influencing the oxygen transfer efficiency of a Speece Cone hypolimnetic aerator

Kowsari, Assieh 11 1900 (has links)
The objective of this research was to characterize the performance of a downflow bubblecontact (DBCA) hypolimnetic aerator — Speece Cone-. The effect of two key design factors, inlet water velocity and the ratio of gas flow rate to water flow rate on four standard units of measure was examined: (a) the Oxygen Transfer Coefficient, KLa, corrected to 20°C, KLa₂₀ (hr­-¹), (b) the Standard Oxygen Transfer Rate, SOTR (g0₂.hr­-¹) (c) the Standard Aeration Efficiency, SAE (gO₂kWhr­-¹), and (d) the Standard Oxygen Transfer Efficiency, SOTE (%). Two sources of oxygen, Pressure Swing Adsorption (PSA) oxygen (87% purity) and air, were compared. KLa₂₀, SOTR, and SAE increased with an increase in the ratio of gas flow rate to water flow rate for both air and oxygen, over a range of 0.5% to 5.0%; while SAE deceased. An increase in inlet water velocity resulted in a decrease in KLa, corrected to 20°C, SOTR, and SAE, but an increase in the SOTE. Treatments on air showed similar, but much less dramatic effect of the gas flow rate to water flow rate ratio and water inlet velocity on KLa₂₀, SOTE, SAE, and SOTE, when compared to treatments on PSA oxygen. The best performance was achieved with an inlet water velocity of 6.9-7.6 ms­-¹ and oxygen flow rate to water flow rate ratio of about 2.5%. At this combination, the SOTE was about 66-72%.
2

Analysis of design factors influencing the oxygen transfer efficiency of a Speece Cone hypolimnetic aerator

Kowsari, Assieh 11 1900 (has links)
The objective of this research was to characterize the performance of a downflow bubblecontact (DBCA) hypolimnetic aerator — Speece Cone-. The effect of two key design factors, inlet water velocity and the ratio of gas flow rate to water flow rate on four standard units of measure was examined: (a) the Oxygen Transfer Coefficient, KLa, corrected to 20°C, KLa₂₀ (hr­-¹), (b) the Standard Oxygen Transfer Rate, SOTR (g0₂.hr­-¹) (c) the Standard Aeration Efficiency, SAE (gO₂kWhr­-¹), and (d) the Standard Oxygen Transfer Efficiency, SOTE (%). Two sources of oxygen, Pressure Swing Adsorption (PSA) oxygen (87% purity) and air, were compared. KLa₂₀, SOTR, and SAE increased with an increase in the ratio of gas flow rate to water flow rate for both air and oxygen, over a range of 0.5% to 5.0%; while SAE deceased. An increase in inlet water velocity resulted in a decrease in KLa, corrected to 20°C, SOTR, and SAE, but an increase in the SOTE. Treatments on air showed similar, but much less dramatic effect of the gas flow rate to water flow rate ratio and water inlet velocity on KLa₂₀, SOTE, SAE, and SOTE, when compared to treatments on PSA oxygen. The best performance was achieved with an inlet water velocity of 6.9-7.6 ms­-¹ and oxygen flow rate to water flow rate ratio of about 2.5%. At this combination, the SOTE was about 66-72%.
3

Analysis of design factors influencing the oxygen transfer efficiency of a Speece Cone hypolimnetic aerator

Kowsari, Assieh 11 1900 (has links)
The objective of this research was to characterize the performance of a downflow bubblecontact (DBCA) hypolimnetic aerator — Speece Cone-. The effect of two key design factors, inlet water velocity and the ratio of gas flow rate to water flow rate on four standard units of measure was examined: (a) the Oxygen Transfer Coefficient, KLa, corrected to 20°C, KLa₂₀ (hr­-¹), (b) the Standard Oxygen Transfer Rate, SOTR (g0₂.hr­-¹) (c) the Standard Aeration Efficiency, SAE (gO₂kWhr­-¹), and (d) the Standard Oxygen Transfer Efficiency, SOTE (%). Two sources of oxygen, Pressure Swing Adsorption (PSA) oxygen (87% purity) and air, were compared. KLa₂₀, SOTR, and SAE increased with an increase in the ratio of gas flow rate to water flow rate for both air and oxygen, over a range of 0.5% to 5.0%; while SAE deceased. An increase in inlet water velocity resulted in a decrease in KLa, corrected to 20°C, SOTR, and SAE, but an increase in the SOTE. Treatments on air showed similar, but much less dramatic effect of the gas flow rate to water flow rate ratio and water inlet velocity on KLa₂₀, SOTE, SAE, and SOTE, when compared to treatments on PSA oxygen. The best performance was achieved with an inlet water velocity of 6.9-7.6 ms­-¹ and oxygen flow rate to water flow rate ratio of about 2.5%. At this combination, the SOTE was about 66-72%. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
4

A computer model for circular and linear bubble plumes

Royston, Wendy Cox 18 September 2008 (has links)
The purposes of this research were to implement the circular plume model developed by Wuest et al. (1992) and to develop and verify a linear plume model based on the circular model. The linear model developed is the first that models a bubble plume generated by a linear source in thermally stratified water and considers the effects of gas transfer between the bubbles and surrounding water. The basis for both models is eight differential flux equations which are solved numerically using Euler’s method. Knowledge of ambient temperature, dissolved solids, dissolved oxygen, and dissolved nitrogen profiles as well as gas input rate, diffuser dimensions, and initial bubble size are required to implement the models. The implementation of the circular model was successful as the results obtained corresponded with those reported by Wuest et al. (1992). The linear model made predictions very similar to those made by the circular model and, therefore, was also considered to perform well. Comparisons of the linear model with available data met with limited success. Initially, the linear model’s predictions of laboratory scale plume velocity data resulted in overpredictions of 40 to 50 percent when compared to actual data. Error in predictions of laboratory scale oxygen transfer data were greater than 100 percent. The model fared better when its predictions were compared to full scale data; the predicted temperature was within 7 percent of that measured at three depths and the predicted oxygen concentration was within 4, 20, and 38 percent for the three depths. Some of the discrepancies in the data likely result from the fact that the Froude number used in the model to calculate initial velocity was derived for a circular, rather than a linear, source. Determination of the appropriate linear Froude number would likely improve the model’s predictions. / Master of Science
5

Hypolimnetic Oxygenation: Coupling Bubble-Plume and Reservoir Models

Singleton, Vickie L. 29 April 2008 (has links)
When properly designed, hypolimnetic aeration and oxygenation systems can replenish dissolved oxygen in water bodies while preserving stratification. A comprehensive literature review of design methods for the three primary devices was completed. Using fundamental principles, a discrete-bubble model was first developed to predict plume dynamics and gas transfer for a circular bubble-plume diffuser. This approach has subsequently been validated in a large vertical tank and applied successfully at full-scale to an airlift aerator as well as to both circular and linear bubble-plume diffusers. The unified suite of models, all based on simple discrete-bubble dynamics, represents the current state-of-the-art for designing systems to add oxygen to stratified lakes and reservoirs. An existing linear bubble plume model was improved, and data collected from a full-scale diffuser installed in Spring Hollow Reservoir, Virginia (U.S.A.) were used to validate the model. The depth of maximum plume rise was simulated well for two of the three diffuser tests. Temperature predictions deviated from measured profiles near the maximum plume rise height, but predicted dissolved oxygen profiles compared very well to observations. Oxygen transfer within the hypolimnion was independent of all parameters except initial bubble radius. The results of this work suggest that plume dynamics and oxygen transfer can successfully be predicted for linear bubble plumes using the discrete-bubble approach. To model the complex interaction between a bubble plume used for hypolimnetic oxygenation and the ambient water body, a model for a linear bubble plume was coupled to two reservoir models, CE-QUAL-W2 (W2) and Si3D. In simulations with a rectangular basin, predicted oxygen addition was directly proportional to the update frequency of the plume model. W2 calculated less oxygen input to the basin than Si3D and significantly less mixing within the hypolimnion. The coupled models were then applied to a simplified test of a full-scale linear diffuser. Both the W2 and Si3D coupled models predicted bulk hypolimnetic DO concentrations well. Warming within the hypolimnion was overestimated by both models, but more so by W2. The lower vertical resolution of the reservoir grid in W2 caused the plume rise height to be over-predicted, enhancing erosion of the thermocline. / Ph. D.

Page generated in 0.1232 seconds