• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sidelobe Suppression and Agile Transmission Techniques for Multicarrier-based Cognitive Radio Systems

Yuan, Zhou 03 May 2009 (has links)
With the advent of new high data rate wireless applications, as well as growth of existing wireless services, demand for additional bandwidth is rapidly increasing. Existing spectrum allocation policies of the Federal Communications Commission (FCC) prohibits unlicensed access to licensed spectrum, constraining them instead to several heavily populated, interference-prone frequency bands, which causes spectrum scarcity. However, it has been shown by several spectrum measurement campaigns that the current licensed spectrum usage across time and frequency is inefficient. Therefore, a concept of unlicensed users temporarily ``borrowing" spectrum from incumbent license holders to improve the spectrum utilization, called ``spectrum pooling", which is based on dynamic spectrum access (DSA), is proposed. Cognitive radio is a communication paradigm that employs software-defined radio technology in order to perform DSA and offers versatile, powerful and portable wireless transceivers. Orthogonal frequency division multiplexing (OFDM) is a promising candidate for cognitive radio transmission. OFDM supports high data rates that are robust to channel impairments. In addition, some subcarriers can be deactivated which constitutes a non-contiguous OFDM (NC-OFDM) transmission. However, one of the biggest problems for OFDM transmission is high out-of-band (OOB) radiation, which is caused by sinc-type function representing the symbols during one time constant. Thus, high sidelobe may occur that will interfere with neighboring transmissions. This thesis presents two novel techniques for NC-OFDM sidelobe suppression. Another concern about cognitive radio systems is that the influence of frequency-selective fading channel. Consequently, this thesis also presents a combined approach employing power loading, bit allocation and sidelobe suppression for OFDM-based cognitive radio systems optimization.
2

Active sonar pulse design

Collins, Timothy January 1996 (has links)
No description available.
3

Hardware Implementation of Filtering Based Sidelobe Suppression for Spectrally Agile Multicarrier based Cognitive Radio Systems

Sail, Amit P 11 January 2013 (has links)
Due to the ever increasing dependency on existing wireless technologies and the growing usage of sophisticated wireless devices, the demand for bandwidth is rising exponentially. Also, the Federal Communications Commission (FCC) has reserved a considerable amount of spectrum for licensed users. As a result, the unlicensed spectrum usage is constrained to the overcrowded unlicensed spectrum. Various spectral management surveys have indicated inefficient spectrum utilization in the licensed spectral bands. The congested unlicensed spectrum and inefficiently used licensed frequency bands calls for an approach to use the available spectrum opportunistically. Therefore, the concept of "Spectrum Pooling", which is based on Dynamic Spectrum Access (DSA), was proposed to make the unused sections of licensed spectrum available to the unlicensed users. In Spectrum Pooling, an empty section of licensed spectrum is borrowed by a secondary user for certain period of time without interfering with the licensed user. Orthogonal Frequency Division Multiplexing (OFDM) is a transmission scheme that is a candidate for Spectrum Pooling since it is capable of forming an adaptive spectral shape that allows coexistence of licensed and unlicensed users while attemting to minimize any interference. Subcarriers in the OFDM signal can be deactivated to generate Non-Contiguous OFDM (NC-OFDM). Even though NC-OFDM allows efficient use of available spectrum, it causes out of band (OOB) radiation, which adversely affects the performance of adjacent user. This thesis presents two novel techniques for combat the effects of OOB radiation generated by NC-OFDM. The proposed techniques employ a filtering-based approach combined with the technique of windowing in order to suppress the unwanted sidelobes by around 35dB-40dB. The attenuation is achieved without affecting other transmission parameters of the secondary user significantly.
4

RETRODIRECTIVE ANTENNA SYSTEM

Kaiser, Julius A. 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / Two retrodirective antenna systems that autonomously point high gain beams to a signal source without requiring a priori knowledge of location are described. The first is a stationary phased array requiring no phase shifters or switches for its operation. The second is a steerable platform with a thinned receive array for signal acquisition and platform pointing and dish(es) to satisfy the high gain function.
5

Successive Target Cancelation For Radar Waveform Sidelobe Reduction

Haliloglu, Onur 01 September 2006 (has links) (PDF)
Many radars suffer from masking of weaker targets by stronger ones due to range sidelobes of pulse compression codes. We propose a method to prevent this by successively detecting targets and canceling their effects. Performance of the proposed method will be investigated in various scenarios with regard to existence of noise, targets, and the Doppler effect.
6

On The Detection Of Sinusoidal Signals Under Sinusoidal Interference

Balci, Burak 01 December 2010 (has links) (PDF)
A complex exponential waveform embedded in white noise can be optimally detected by matched filtering which is equivalent to Discrete Fourier Transform (DFT). However, if the input includes multiple complex exponentials, the DFT processing is not optimal. The frequency spectrum of the complex exponential signal with finite observation interval is not impulse. The spectrum includes side-lobes called spectral leakage.Because of the strong side-lobes, weak components can be masked, or side-lobes can be interpreted as independent complex exponentials causing false alarms. The conventional approach is to suppress side-lobes by using an amplitude weighting function, called a window function. However, windows reduce the signal to noise ratio at the output and also widens the main lobe in the spectrum resulting in a loss of frequency resolution. In this thesis, the problem of detection of a complex exponential signal under a secondary complex exponential interference is investigated. Alternative windowing techniques such as spatially variant apodization (SVA), dual apodization (DA) are studied in the context of detection of weak sinusoids under strong sinusoidal interference. The detection performance of SVA and DA is compared with the conventional methods and the optimal detector.
7

Towards Interference-Immune and Channel-Aware Multicarrier Schemes: Filters, Lattices, and Interference Issues

Sahin, Alphan 01 January 2013 (has links)
In this dissertation, multicarrier schemes are reviewed within the framework of Gabor Systems. Their fundamental elements; what to transmit, i.e., symbols, how to transmit, i.e., filters or pulse shape, and where/when to transmit, i.e., lattices are investigated extensively. The relations between different types of multicarrier schemes are discussed. Within the framework of Gabor systems, a new windowing approach, edge windowing, is developed to address the out-of-band (OOB) radiation problem of orthogonal frequency division multiplexing (OFDM) based multicarrier schemes. To the best of our knowledge, for the first time, the diversity on the range of the users is exploited to suppress the sidelobes of OFDM. In addition to that, the concept of using different filters in OFDM structure is proposed. Besides the improvement on the OOB radiation performance of OFDM via edge windowing, conventional lattice structure of OFDM frame is enhanced considering the diversity in the network. The lattice structure of an OFDM frame is designed based on the statistical characteristics of the range of the users and the mobility. The concept of channel-aware frame structure is developed, which allows more efficient and reliable transmission. In addition to the aforementioned improvements on OFDM, interference issues in uncoordinated networks are addressed in this dissertation considering different multicarrier schemes. It is stressed that the interference from other links in the network sharing the same spectrum might degrade the link performance between the devices in an uncoordinated network, significantly. Considering the degradation due to other-user interference, the concept of partially overlapping tones (POT) is proposed. With the concept of partially overlapping tones, the interference energy observed at the victim receiver is mitigated via an intentional frequency offset between the links. The usefulness of intentional frequency offset to combat with the asynchronous nature of other-user interference without any timing constraint between interfering signals is emphasized. To the best of our knowledge, for the first time, the efficacy of non-orthogonal schemes are shown along with POT to address the other-user interference, which relies on the fact that self-interference problem is easier than other-user interference problem in an uncoordinated network. In the last part of this dissertation, required number of equalizer taps for multicarrier schemes is investigated to address the potential self-interference problems (e.g. due to the non-orthogonal multicarrier schemes with the concept of POT). Composite impact of transmit pulse shape, communication medium, and receive filter on the characteristics of the interference among the symbols in time and frequency is analyzed. It is emphasized that while taking less number of taps into account for the channel estimation causes lack of description of the composite effect, using more number of taps folds the noise into the estimated channel. The number of interfering symbols and their locations are obtained in both time and frequency for a given multicarrier scheme and signal-to-noise ratio. It is shown that correct number of taps yields not only improvement on BER performance but also less complex equalizer structures in practice.
8

Multidimensional Waveform Shaping in Multicarrier Systems

Guvenkaya, Ertugrul 20 November 2015 (has links)
Constantly increasing demand for wireless communications in various applications has always led to new ways of modulating the radio frequency (RF) carrier signal by advancing waveform structure throughout generations. Although communication data rates are limited by the theoretical capacity, specific signaling designs for the signal that experiences natural and artificial effects in the transmission medium such as multipath fading channel, hardware impairments and multiuser environment promised better solutions in providing improved wireless access to various type of users and networks. Besides communication capacity, broadcasting nature of radio signals poses the information security as another main concern in wireless communications. In this dissertation, new advanced methods for improving signal statistics in multiple domains are studied. Instead of focusing on a single aspect, the waveform design approaches studied in this dissertation tackle with improving the orthogonal frequency-division multiplexing (OFDM)-based signaling in multiple perspectives such as out-of-band (OOB) emission reduction, peak-to-average-power ratio (PAPR) reduction, and secure transmission with minimum or no eect at the receiver side. Various concepts are coherently exploited while achieving aforementioned goals with minimal cost such as unexplored spaces in the signal space like (CP), guard band, multipath fading; multivariate nature of the multicarrier signals; time spreading and location uniqueness of the wireless channels. The proposed techniques are analyzed theoretically and performance results are presented including related previous works in the literature. It is worth noting that the methods presented in the dissertation can be easily applicable to conventional OFDM systems thanks to having no or minimal change in the receiver structure.
9

Physical Layer Algorithms for Interference Reduction in OFDM-Based Cognitive Radio Systems

Tom, Anas 01 January 2015 (has links)
Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier transmission scheme used in most of the existing wireless standards such as LTE, WiFi and WiMAX. The popularity of OFDM stems from the multitude of benefits it offers in terms of providing high data rate transmission, robustness against multipath fading and ease of implementation. Additionally, OFDM signals are agile in the sense that any subcarrier can be switched on or off to fit the available transmission bandwidth, which makes it well suited for systems with dynamic spectrum access such as cognitive radio systems. Nonetheless, and despite all the aforementioned advantages, OFDM signals have high spectral sidelobes outside the designated band of transmission, that can create severe interference to users in adjacent transmission bands, particularly when there is no synchronization between users. The focus of this dissertation is to propose baseband solutions at the Physical Layer (PHY) of the communications system to address the interference resulting from the high out-of-band (OOB) emissions of OFDM. In the first part of this dissertation, we propose a precoder capable of generating mask compliant OFDM signals with low OOB emissions that are always contained under a given spectrum emission mask (SEM) specified by the OFDM standard. The proposed precoder generates transmitted signals with bit error rate (BER) performance similar to that of classical OFDM and does not reduce the spectral efficiency of the system. In the second part of this dissertation, we introduce a novel and elegant approach, called suppressing alignment (SA), to jointly reduce the OOB interference and peak-to-average power ratio (PAPR) of OFDM systems. SA exploits the unavoidable redundancy provided by the CP as well as the wireless communications channel to generate an OOB/PAPR suppressing signal at the OFDM transmitter. Furthermore, after passing through the wireless channel, the suppressing signal is aligned with the CP duration at the OFDM receiver, essentially causing no interference to the data portion of the OFDM symbol. The proposed approach improves the PAPR of the transmitted OFDM signal and reduces the OOB interference by tens of decibels. Additionally, the proposed approach maintains an error performance similar to that of plain OFDM without requiring any change in the receiver structure of legacy OFDM. In order to reduce the spectral emissions of OFDM, additional blocks, such as linear precoders, are usually introduced in the transmitter leading to a transmitted signal that is drastically different than that of a classical OFDM signal. This distortion is typically quantified by the error vector magnitude (EVM), a widely used metric specified by the wireless standard and is directly related to the BER performance of the system. The receiver can usually decode the information data with acceptable error probabilities if the distortion introduced to the transmitted signal is below the EVM values specified in the OFDM standard. Linear precoders, while capable of achieving significant reduction in the OOB interference, they typically introduce large distortion to the transmitted signal. As such, the receiver needs to know the precoding done at the transmitter to be able to recover the data which usually entails sending large amount of side information that can greatly reduce the spectral efficiency of the system. In the last part of this dissertation, we target the design of precoders for the purpose reducing the OOB interference, in a transparent manner where the receiver does not need to know the changes introduced in the transmitter. We present two precoders capable of significantly reducing the OOB emissions while producing transmitted signals with EVM values below those specified by the wireless standard, thereby guaranteeing acceptable error performance.

Page generated in 0.1204 seconds