• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 9
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Adaptive low power receiver combining ADC resolution and digital baseband for wireless sensors networks based in IEEE 802.15.4 standard / Receptor adaptativo de baixa potencia combinando resolução de conversor analógico para digital e banda base digital para redes de sensores sem fio baseado no protocolo IEEE 802.15.4

Santos, Maico Cassel dos January 2015 (has links)
Com o aumento das aplicações e dispositivos para Internet das Coisas, muitos esforços para reduzir potência dissipada nos transceptores foram investidos. A maioria deles, entretanto, focam individualmente no rádio, nos conversores analógicos para digital e viceversa, e na arquitetura de banda base digital. Como consequência, há pouca margem para melhorias na potência dissipada nestes blocos isolados que compense o enorme esforço. Portanto, este trabalho propõe uma arquitetura adaptativa a nível de sistema focando em reduzir o consumo no conversor analógico para digital e no receptor digital. Ele utiliza um algoritmo robusto para o receptor banda base digital, um conversor analógico para digital topologia Sigma-Delta e um bloco de controle realimentado conforme a relação sinal ruído medida do pacote recebido. O sistema foi projetado para o protocolo IEEE 802.15.4. Para validação do sistema e estimar a potência consumida foi feito um modelo de sistema utilizando a ferramenta Matlab, uma descrição do hardware em linguagem Verilog e uma síntese lógica utilizando o processo da X-FAB XC018. As simulações mostram uma redução na potência consumida pelo sistema de até 13% e ainda atingindo os requisitos do protocolo. Os resultados deste trabalho foram publicados na conferência internacional em tecnologia de instrumentação e medidas de 2014 realizada na cidade de Montevidéu no Uruguai. / With the increase of Internet of Things applications and devices, many efforts to reduce power consumption in transceiver has been invested. Most of them targeted in RF frontend, converters, or in the digital baseband architecture individually. As result, there are few margins nowadays for power improvement in these blocks singly that compensates the huge hard work required. The next optimization step leads to a system level analysis seeking design space and new possibilities expansion. It is in this field that adaptive systems approaches are conquering ground recently. The solutions combines Radio Frequency (RF) and process variation techniques, Low Pass Filters (LPF) and Analog to Digital Converters (ADCs) adjustment for better performance, digital baseband bit width adaptive according to income packet SNR, configurable ADC resolution and topology, and others. In this scenario the current work proposes an adaptive system level architecture targeting ADC and digital receiver power reduction. It uses a robust algorithm for digital baseband receiver, a Sigma-Delta ADC, and suggests a feedback control block based on packet SNR measure. The system was designed for the IEEE 802.15.4 standard and required system modeling using Matlab tool, hardware description in Verilog language, and logic synthesis using X-FAB XC018 process for validation and power consumption estimation. Simulations show up to 15% of system power reduction and still meeting the standard requirements. The work results were published in the International Instrumentation and Measurement Technology Conference of 2014 occurred in Montevideo - Uruguay.
12

FULLY-INTEGRATED CMOS PH, ELECTRICAL CONDUCTIVITY, AND TEMPERATURE SENSING SYSTEM

Asgari, Mohammadreza January 2018 (has links)
No description available.
13

AN 8-BIT 13.88 kS/s EXTENDED COUNTING ADC

Lala, Padmini 29 August 2019 (has links)
No description available.
14

Design & Implementation Of Low Power Sigma Delta ADCs For Wide Band Applications

Harish, C 01 1900 (has links) (PDF)
This thesis focuses on the design and implementation of low power Σ∆ ADCs in 130 nanometer CMOS technology. The design issues in the implementation of a third order ADC with a multi-bit and single bit quantizer are discussed. The advancement in CMOS technology has led to designing as much of electronics systems as possible with the digital circuits and digital signal processing replacing analog processing in most cases. Hence there is a need for digitizing analog signals with analog to digital converter (ADC). In communication systems this needs to be done immediately after the antenna in a receiver system. As this is difficult to implement due to high speed and high power consumption, RF signal is converted to a lower intermediate frequency (IF) and digitized. This work stresses low power implementation of high bandwidth Σ∆ ADCs for digitizing the IF. Design techniques involved in the implementation of a third order continuous time Σ∆ ADC with a 4 bit quantizer as well as a single bit quantizer for wide bandwidth are discussed. Moreover, a third order continuous time audio ADC implementation was also done. The behavioural modelling of the Σ∆ ADC along with clock jitter non-linearity model was developed and the issues in circuit design techniques are addressed. The continuous time ADCs’ major problem, namely, excess loop delay is discussed in detail and an efficient compensation technique for the same is implemented which allows a large reduction of power consumed by the ADC. Choice of loop filter architecture, quantizer and transistor level implementation are given that result in better immunity to offsets and process variations. Both the ADCs have been implemented using UMC 130 nm Mixed-mode RF-CMOS process and the simulation results for the multi-bit ADC gives a peak SNR of 56dB with a dynamic range of 65dB with power consumption of 2mW. The audio ADC achieves a peak SNR of 94.2dB with a dynamic range of 91dB.
15

Low-cost testing of high-precision analog-to-digital converters

Kook, Se Hun 05 July 2011 (has links)
The advent of deep submicron technology has resulted in a new generation of highly integrated mixed-signal system-on-chips (SoCs) and system-on-packages (SoPs). As a result, the cost of electrical products has sharply declined, and their performance has greatly improved. However, a testing throughput still remains one of the major contribution factors to final cost of the electrical products. In addition, highly precise and robust test methods and equipment are needed to promise non-defective products to customers. Hence, the testing is a critical part of the manufacturing process in the semiconductor industry. Testing such highly integrated systems and devices requires high-performance and high-cost equipment. Analog-to-digital converters (A/D converters) are the largest volume mixed-signal circuits, and they play a key role in communication between the analog and digital domains in many mixed-signal systems. Due to the increasing complexity of the mixed-signal systems and the availability of the new generations of highly integrated systems, reliable and robust data conversion schemes are necessary for many mixed-signal designs. Many applications such as telecommunications, instrumentation, sensing, and data acquisition have demanded data converters that support ultra high-speed, wide-bandwidths, and high-precision with excellent dynamic performance and low-noise. However, as resolutions and speeds in the A/D converters increase, testing becomes much harder and more expensive. In this research work, low-cost test strategies to reduce overall test cost for high-precision A/D converters are developed. The testing of data converters can be classified as dynamic (or alternating current (AC)) performance test and static (or direct current (DC)) performance test [1]. In the dynamic specification test, a low-cost test stimulus is generated using an optimization algorithm to stimulate high-precision sigma-delta A/D converters under test. Dynamic specifications are accurately predicted in two different ways using concepts of an alternate-based test and a signature-based test. For this test purpose, the output pulse stream of a sigma-delta modulator is made observable and useful. This technique does not require spectrally pure input signals, so the test cost can be reduced compared to a conventional test method. In addition, two low-cost test strategies for static specification testing of high-resolution A/D converters are developed using a polynomial-fitting method. The cost of testing can be significantly reduced as a result of the measurement of fewer samples than a conventional histogram test. While one test strategy needs no expensive high-precision stimulus generator, which can reduce the test cost, the other test strategy finds the optimal set of test-measurement points for the maximum fault coverage, which can use minimum-code measurement as a production test solution. The theoretical concepts of the proposed test strategies are developed in software simulation and validated by hardware experiments using a commercially available A/D converter and designed converters on printed circuit board (PCB). This thesis provides low-cost test solutions for the high-resolution A/D converters.

Page generated in 0.0379 seconds