• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4702
  • 1244
  • 771
  • 534
  • 339
  • 227
  • 115
  • 93
  • 84
  • 83
  • 70
  • 60
  • 39
  • 39
  • 39
  • Tagged with
  • 10100
  • 5205
  • 2160
  • 1483
  • 1460
  • 1449
  • 1343
  • 1183
  • 966
  • 952
  • 903
  • 859
  • 698
  • 673
  • 640
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Dynamics of amplitude and phase scintillations in a millimetre-wave satellite downlink

Senin, Sergei January 1997 (has links)
No description available.
712

Design and analysis of fixed and adaptive sigma-delta modulators

Yu, Jie January 1992 (has links)
No description available.
713

A direct temporal domain approach for ultrafast optical signal processing and its implementation using planar lightwave circuits /

Xia, Bing, 1972 Nov. 7- January 2006 (has links)
Ultrafast optical signal processing, which shares the same fundamental principles of electrical signal processing, can realize numerous important functionalities required in both academic research and industry. Due to the extremely fast processing speed, all-optical signal processing and pulse shaping have been widely used in ultrafast telecommunication networks, photonically-assisted RFlmicro-meter waveform generation, microscopy, biophotonics, and studies on transient and nonlinear properties of atoms and molecules. In this thesis, we investigate two types of optical spectrally-periodic (SP) filters that can be fabricated on planar lightwave circuits (PLC) to perform pulse repetition rate multiplication (PRRM) and arbitrary optical waveform generation (AOWG). / First, we present a direct temporal domain approach for PRRM using SP filters. We show that the repetition rate of an input pulse train can be multiplied by a factor N using an optical filter with a free spectral range that does not need to be constrained to an integer multiple of N. Furthermore, the amplitude of each individual output pulse can be manipulated separately to form an arbitrary envelope at the output by optimizing the impulse response of the filter. / Next, we use lattice-form Mach-Zehnder interferometers (LF-MZI) to implement the temporal domain approach for PRRM. The simulation results show that PRRM with uniform profiles, binary-code profiles and triangular profiles can be achieved. Three silica based LF-MZIs are designed and fabricated, which incorporate multi-mode interference (MMI) couplers and phase shifters. The experimental results show that 40 GHz pulse trains with a uniform envelope pattern, a binary code pattern "1011" and a binary code pattern "1101" are generated from a 10 GHz input pulse train. / Finally, we investigate 2D ring resonator arrays (RRA) for ultraf ast optical signal processing. We design 2D RRAs to generate a pair of pulse trains with different binary-code patterns simultaneously from a single pulse train at a low repetition rate. We also design 2D RRAs for AOWG using the modified direct temporal domain approach. To demonstrate the approach, we provide numerical examples to illustrate the generation of two very different waveforms (square waveform and triangular waveform) from the same hyperbolic secant input pulse train. This powerful technique based on SP filters can be very useful for ultrafast optical signal processing and pulse shaping.
714

The Tie2 RTK: Regulation and Downstream Signaling

Sturk, Celina Marie 03 March 2010 (has links)
Tie2 is a receptor tyrosine kinase (RTK) involved in numerous aspects of both normal and pathological angiogenesis. Proper functioning of this receptor is essential for normal development of the vasculature in the embryo as well as vessel maintenance and at sites of active angiogenesis in the adult. A growing list of pathological states has been attributed to a disruption of the angiogenic ‘balance’ including psoriasis, arthritis, atherosclerosis and diabetic retinopathy. Elucidating the molecular mechanisms behind this important biological process will provide insight into the various molecules involved as well as provide potential targets for novel angiogenic therapies. In an attempt to better understand the signaling pathways downstream of the Tie2 receptor we have studied tyrosine residues on the receptor believed to play an important role in Tie2 function. Of these, we have identified Y1111 as a negative regulatory site on Tie2. Mutation of this site affects receptor phosphorylation and kinase activity. Furthermore, protease digestion studies indicate that mutation of Y1111 may alter receptor conformation and potentially relieve negative inhibition imparted by the C-tail of Tie2. As well, we examined potential Tie2 downstream binding partners, specifically the novel Grb7 family of proteins. This work describes for the first time tyrosine phosphorylation of Grb14, an adaptor molecule previously shown to bind Tie2 in vitro. Moreover, our data suggests a role for this adaptor in Tie2 signal transduction involving two tyrosine residues in the receptor C-terminal tail; Y1100 and Y1106. These studies provide important insight into both signal transduction downstream of Tie2 as well as help us understand some of the molecular mechanisms behind the intrinsic ability of this RTK to regulate its own activity.
715

Rapid robust acquisition for burst-mode spread spectrum /

Gossink, D. E. Unknown Date (has links)
Thesis (PhD)--University of South Australia, 1997
716

Coded-waveform design for high speed data transfer over high frequency radio channels /

Gill, Martin Christopher Unknown Date (has links)
Thesis (PhD) -- University of South Australia, 1998.
717

Characterisation of the G3BP family of proteins

French, J. Unknown Date (has links)
No description available.
718

Signal processing techniques for optical fiber networks

Yi, Xingwen January 2007 (has links)
At present, optical fiber transmissions are dominated by intensity modulation and direct detection, which fundamentally limit the signal processing capabilities in optical fiber networks. On the other hand, manipulation of optical phase enables advanced signal processing techniques for various applications. This thesis includes three parts and makes contributions in three research areas in optical fiber networks, by applying optical and electronic signal processing techniques. In the first part of the thesis, optical signal processing is employed to realize a novel all-optical label swapping (AOLS) technique using synchronous phase modulation. This technique is shown to address the forwarding speed bottleneck in optical packet switched networks (OPSN). By exploiting the unique symmetry of phase-shift keying (PSK), for the first time, label erasure and insertion are performed in a single step by a phase modulator without wavelength conversion. We also propose and demonstrate a polarization insensitive phase modulator to address the polarization sensitivity of AOLS. Furthermore, we emulate multi-hop all-optical label swapping in a re-circulating loop to investigate the power penalties from the accumulated phase errors and the timing mismatch. Based on the experimental and analytical results, we show that this technique can save wavelength converters significantly if compared with conventional AOLS techniques requiring dedicate wavelength converters.
719

Coded-waveform design for high speed data transfer over high frequency radio channels /

Gill, Martin Christopher Unknown Date (has links)
Thesis (PhD) -- University of South Australia, 1998.
720

Estimation techniques for parameters of complex exponentials with noise

Younan, Nicolas H. January 1988 (has links)
Thesis (Ph. D.)--Ohio University, June, 1988. / Title from PDF t.p.

Page generated in 0.0264 seconds