• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation d’un rôle inédit de la glycolyse : contrôle du senseur du glucose et de la voie de la signalisation du glucose chez la levure Kluyveromyces lactis / Caracterization of a new role for glycolysis : control of the glucose sensor and the glucose signaling pathway in the yeast Kluyveromyces lactis

Cairey-Remonnay, Amélie 28 November 2014 (has links)
Chez les levures, organismes eucaryotes unicellulaires, le glucose est la source d'énergie préférée. La levure modèle Kluyveromyces lactis possède deux perméases au glucose. L'expression d'une de ces deux perméases, codée par le gène RAG1, est induite par la présence de glucose extracellulaire et cette régulation transcriptionnelle dépend de la détection du glucose par un senseur membranaire spécifique, Rag4. Cependant, la régulation de l'expression de RAG1 dépend également de la capacité des cellules à métaboliser le glucose via la glycolyse. En effet, l'expression de RAG1 est fortement affectée dans des mutants glycolytiques malgré la présence de glucose extracellulaire. Au cours de cette thèse, nous nous sommes attachés à déterminer les mécanismes via lesquels la glycolyse contrôle l'expression de RAG1. Grâce à l'utilisation de mutants glycolytiques ou d'inhibiteurs chimiques de la glycolyse chez K. lactis, nous avons démontré que la glycolyse régule la stabilité du senseur Rag4 à la membrane plasmique et contrôle ainsi la voie de signalisation du glucose et l'expression de RAG1. De plus, ce mécanisme de contrôle est conservé chez la levure modèle Saccharomyces cerevisiae. L'étude plus approfondie de Rag4 nous a permis de déterminer que la transmission du signal glucose requiert la queue C-terminale cytoplasmique de Rag4, qui sert de plateforme d'interaction protéique. La caractérisation fonctionnelle de Rag4 nous a permis de mettre en évidence que la protéine contient plusieurs domaines impliqués dans le contrôle de sa stabilité en fonction du type de signal induisant la déstabilisation: signal glycolytique ou changement de source de carbone. Enfin, la nature du signal issu de la glycolyse qui cible le senseur membranaire Rag4 a été étudiée en testant deux hypothèses : le signal est protéique (enzyme de la glycolyse) ou métabolique (métabolite intermédiaire de la glycolyse). Ces travaux de thèse ont permis de mettre en évidence un rôle inédit de la glycolyse dans le contrôle de la stabilité des senseurs membranaires du glucose chez les levures K. lactis et S. cerevisiae / Yeasts are unicellular eukaryotic organisms which prefer glucose as energy source. The yeast model Kluyveromyces lactis has two glucose permeases. The expression of one of its permeases, RAG1, is induced by extracellular glucose. The glucose signaling pathway responsible for RAG1 expression regulation is dependent upon glucose sensing through a specific membrane glucose sensor, Rag4. However, RAG1 expression is also dependent upon glucose metabolism by glycolysis. Indeed, in glycolytic mutants RAG1 expression is strongly affected even when glucose is present. During these doctoral studies, we characterized mechanisms involved in glycolytic control on glucose signaling. Using glycolytic mutant or glycolysis chemical inhibitors, we have demonstrated that, in K. lactis, glycolysis targets the stability of the glucose sensor Rag4, controlling glucose signaling and RAG1 expression. This glycolytic control appears to be conserved in the yeast model Saccharomyces cerevisiae. We have shown that the C-terminal cytoplasmic tail of glucose sensor Rag4 is necessary for glucose signaling and forms a protein interaction platform. Rag4 protein contains several domains controlling Rag4 stability in response to different destabilization signals: glycolytic signal or carbon source signal. Finally, the nature of the glycolytic signal was studied considering two hypotheses: protein nature (e.g. glycolytic enzyme) or metabolic nature (e.g. glycolysis metabolic intermediate). This doctoral thesis underlines a new role of glycolysis in controlling membrane glucose sensor stability in K. lactis and S. cerevisiae
2

Rôles physiologiques des protéines ASR à l'égard de la signalisation, du transport et du métabolisme des sucres dans deux modèles cellulaires de vigne / Physiological functions of ASR proteins regarding sugar signaling, transport and metabolism in two cell culture models in grapevine

Parrilla, Jonathan 27 March 2015 (has links)
Les sucres, sont des signaux métaboliques, impliqués dans le développement des plantes et leurs réponses aux contraintes du milieu. Les transporteurs de sucres se révèlent à la fois acteurs de la répartition des sucres et cibles de leur signalisation. L'ASR (ABA, Stress and Ripening) de la Vigne, VvMSA, étant identifiée comme protéine régulatrice de l'expression génique du transporteur d’hexoses VvHT1, l'objectif de la thèse est d'appréhender ses rôles physiologiques dans une démarche de biologie intégrée.Le premier axe a été dédié à la mise en place des modèles biologiques, des cellules embryogènes et non embryogènes de Vigne, issues du même fond génétique mais cultivées sur deux sources de carbone différentes. La caractérisation des cinétiques de prolifération et l'analyse des métabolomes ont mis en évidence leur sensibilité/tolérance différentielle à la carence en sucres. Le deuxième axe a porté sur la régulation de VvHT1 dans les deux types cellulaires sauvages et leurs mutants de surexpression/répression de VvMSA. L'approche pharmacologique utilisant des analogues du glucose, l'analyse de l'expression génique, le transport du glucose et l'activité des enzymes de la glycolyse indiquent que VvMSA affecte l'expression de VvHT1 par la voie dépendante du métabolisme du glucose. Le troisième volet a été réalisé par une approche de protéomique quantitative et comparative des protéines nucléaires des cellules embryogènes sauvages et réprimées pour VvMSA. Les protéines à expression significativement affectée par l'absence de l'ASR, laissent entrevoir un nouveau rôle à l'interconnexion des réponses métaboliques aux stress et la régulation épigénétique de l'expression génique. / Sugars are metabolic signals involved in plant development and responses to environmental cues. Sugar transporters are both actors of sugar partitioning and targets of sugar signaling. As Grape ASR (ABA, Stress, Ripening), VvMSA, is identified as a regulatory protein controlling gene expression of the hexose transporter VvHT1, the aim of the PhD thesis is to assess its physiological functions by an integrative biology approach. The first part of the study consisted in the establishment of biological models, embryogenic and non embryogenic grape cells, sharing the same genetic background but growing on distinct carbon sources. The characterization of the proliferation kinetics and metabolomes of both cell types revealed differences in their sensitivity/tolerance to sugar starvation.The second objective was focused on VvHT1 expression regulation in both cell types and their mutants overexpressing or silenced for VvMSA. The pharmacological approach using glucose analogues, coupled to the analysis of gene expression, glucose transport and glycolytic enzymes activity, suggest that VvMSA affects VvHT1 expression through a glucose metabolism dependent pathway.The third research axis was carried out through a quantitative and comparative proteomic analysis of nuclear proteins in embryogenic wild type and VvMSA silenced cells. Proteins whose expression is affected by ASR repression suggest a new functional role of VvMSA at the interplay between metabolic responses to stress and epigenetic regulation of gene expression.

Page generated in 0.0826 seconds