• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Couplage poro-élastique et signaux hydrauliques dans les plantes : approche biomimétique / Poroelastic couplings and hydraulic signals in plants : biomimetic approach

Louf, Jean-François 16 December 2015 (has links)
Dans la nature les plantes sont sans cesse soumises à des sollicitations mécaniques qui affectent et modifient leur croissance. Un aspect remarquable de cette réponse est qu’elle n’est pas seulement locale mais non-locale : la flexion d’une tige ou d’une branche inhibe rapidement la croissance loin de la zone sollicitée. Cette observation suggère l'existence d'un signal pouvant se propager à travers toute la plante. Parmi les différentes hypothèses, il a été suggéré que ce signal pouvait être purement mécanique, et provenir d’un couplage hydro/mécanique entre la déformation du tissu et la pression de l’eau contenue dans le système vasculaire de la plante. L’objectif de cette thèse est de comprendre l’origine physique de ce couplage par une approche biomimétique. Pour cela, nous avons développé des branches artificielles micro-fluidiques possédant des caractéristiques mécaniques et hydrauliques similaires à celles d'une branche d'arbre. Nous avons montré que la flexion de ces branches génère une surpression globale non-nulle dans le système, qui varie comme le carré de la déformation longitudinale. Un modèle simple basé sur un mécanisme analogue à l’ovalisation des tubes permet de prédire cette réponse poroélastique non-linéaire et d’identifier le paramètre physique clé pilotant cette réponse en pression : le module de compressibilité de la branche. A la lumière de ces résultats, des expériences sur des branches d'arbre ont ensuite été conduites et des signaux similaires sont obtenus et comparés au modèle théorique. La similitude suggère le caractère générique du mécanisme physique identifié pour la génération de signaux hydraulique dans les plantes. / Plants are constantly subjected to external mechanical loads such as wind or touch and respond to these stimuli by modifying their growth and development. A fascinating feature of this mechanical-induced-growth response is that it is not only local, but also non-local: bending locally a stem or a branch can induce a very rapid modification of the growth far away from the stimulated area, suggesting the existence of a signal that propagates across the whole plant. The nature and origin of this signal is still not understood, but it has been suggested recently that it could be purely mechanical and originate from the coupling between the local deformation of the tissues and the water pressure in the vascular system. The objective of this work is to understand the origin of this hydro/mechanical coupling using a biomimetic approach. Artificial microfluidic branches have been developed, that incorporate the mechanical and hydraulic key features of natural ones. We show that the bending of these branches generates a steady overpressure in the whole system, which varies quadratically with the bending deformation. A simple model based on a mechanism analogue to tube ovalization enables us to predict this non-linear poroelastic response, and identify the key physical parameter at play, namely the elastic bulk modulus of the branch. Further experiments conducted on natural tree branches reveal the same phenomenology. Once rescaled by the model prediction, both the biomimetic and natural branches falls on the same master curve, showing the universality of the identified mechanism for the generation of hydraulic signals in plants.
2

Molecular and physiological characterization of grapevine rootstock adaptation to drought / Caractérisation moléculaire et physiologique de l'adaptation à la sécheresse des porte-greffes de vigne

Peccoux, Anthony 19 December 2011 (has links)
Dans le contexte du changement climatique, les prédictions réalisées mettent en évidence une altération de la disponibilité en eau dans de nombreuses régions viticoles ; ce qui, conjointement à l’augmentation de la population mondiale et la diminution des terres agricoles, va accroître la compétition pour l’utilisation des ressources hydriques. Par conséquent, améliorer l'adaptation à la sécheresse de la vigne est un des enjeux majeurs des prochaines années. Pour cela, une adaptation des pratiques culturales peut être proposée, en particulier le choix pertinent du matériel végétal et notamment du porte-greffe.Dans ce travail, le rôle du porte-greffe vis-à-vis de la réponse de la vigne greffée à la contrainte hydrique a été étudié, en utilisant des approches écophysiologiques, moléculaires et de modélisation. Des expériences ont été réalisées en conditions contrôlées afin d’étudier l’effet du déficit hydrique à court et long terme sur les réponses de différents porte-greffes greffés avec le même scion.Le modèle écophysiologique a démontré que les porte-greffes affectent l'ouverture stomatique du greffon par des processus coordonnés incluant les caractéristiques racinaires, les signaux hydrauliques et les signaux chimiques lors d’un déficit hydrique à court terme. La conductance stomatique, le taux de transpiration et la conductance hydraulique des feuilles ont été plus élevés en conditions irriguées et de stress hydriques modérés chez le génotype résistant à la sécheresse (110 Richter) par rapport au génotype sensible à la sécheresse (Vitis riparia cv. Gloire de Montpellier). Nous avons identifié plusieurs paramètres génétiques impliqués dans le contrôle de la régulation stomatique. Des différences d’architecture racinaire et de conductivité hydraulique des racines ont été identifiées entre les porte-greffes.Le déficit hydrique à long terme a entrainé des réponses adaptatives différentes entre les porte-greffes. Le génotype tolérant la sécheresse a induit une modification du diamètre des vaisseaux du xylème de la partie apicale de la racine en réponse au déficit hydrique modéré tandis que le génotype sensible n'a pas présenté de différence par rapport au contrôle. L’analyse transcriptomique des racines a identifié des gènes spécifiques aux différents génotypes, qui sont régulés en fonction du niveau de déficit hydrique. La comparaison entre les niveaux de stress et les génotypes a identifié 24 gènes intervenant dans l’interaction « traitement × génotype ». Ces gènes sont majoritairement impliqués dans le métabolisme des lipides et de la paroi cellulaire. Des courbes de réponse au déficit hydrique spécifiques aux différents génotypes ont été observées. La protection contre les dommages liés aux stress oxydatifs induits par le stress hydrique semble être un mécanisme important chez le porte-greffe résistant à la sécheresse. Le génotype sensible semble répondre au déficit hydrique par une modification des propriétés de la paroi cellulaire de la racine. / Climate change raises concerns about temporal and spatial water availability in many grape growing countries. The rapidly increasing world population and the scarcity of suitable land for agricultural food production, together with a changing climate, will increase competition with grape-producing areas for the use of land and resources. Consequently, other practices that can potentially improve water management of vineyards and water acquisition by grapevines need to be considered. Aside from canopy systems and their management, the choice of plant material is a key issue. Therefore, in the present work, the role of different rootstocks, regarding their tolerance to drought, was investigated for their potential effects on i) water uptake, ii) water transport and iii) shoot water use, using a combination of ecophysiological, modelling and transcriptomic approaches. Experiments were conducted under controlled conditions to decipher short and long term responses to drought of different rootstocks grafted with the same scion. An ecophysiological model was used to investigate the roles of rootstock genotypes in the control of stomatal aperture. Long-term steady state water-deficit conditions were used to examine the responses of i) whole plant growth, root anatomy and hydraulic properties and ii) transcriptome remodelling in the roots.Our model showed that rootstock affect stomatal aperture of the grafted scion via coordinated processes between root traits, hydraulic signals and chemical signals. Stomatal conductance, transpiration rate and leaf-specific hydraulic conductance were higher and better maintained under well-watered and moderate water-deficit conditions in the drought-tolerant genotype (110 Richter) compared to the drought-sensitive one (Vitis riparia cv. Gloire de Montpellier). We identified several genotype-specific parameters which play important roles, like root-related parameters, in the control of stomatal regulation. Additionally, root system architecture and root hydraulic properties are important constitutive traits identified between rootstocks.Long-term water-deficit induced genotype adaptive responses in the roots were evaluated. The drought-tolerant genotype exhibited a substantial shift in root tips xylem conduit diameter under moderate water-deficit while the drought-sensitive genotype did not respond. Transcriptomic analysis identified genotype-specific transcripts that are regulated by water-deficit levels. The comparison between stress levels and genotypes identified 24 significant genes in “treatment×genotype” interactions, most of them were involved in lipid metabolism and cell wall processes. These genes displayed genotype-specific water-deficit response curves. Protection against drought-induced oxidative damage was found to be an important mechanisms induced by the drought-tolerant rootstock, while the drought-sensitive one responds to water-deficit by modification of cell wall properties.

Page generated in 0.2814 seconds