Spelling suggestions: "subject:"ignificance level"" "subject:"dignificance level""
11 |
Modelagem de circuitos neurais do sistema neuromotor e proprioceptor de insetos com o uso da transferência de informação entre conexões neurais / Neural circuits modeling of insects neuromotor system based on information transfer approach and neural connectivityWagner Endo 31 March 2014 (has links)
Apresenta-se, neste trabalho, o desenvolvimento de um modelo bioinspirado a partir do circuito neural de insetos. Este modelo é obtido através da análise de primeira ordem dada pelo STA (Spike Triggered Average) e pela transferência de informação entre os sinais neurais. São aplicadas técnicas baseadas na identificação dos atrasos de tempo da máxima coerência da informação. Utilizam-se, para esta finalidade, os conceitos da teoria de informação: a DMI (Delayed Mutual Information) e a TE (Transfer Entropy). Essas duas abordagens têm aplicação em transferência de informação, cada uma com suas particularidades. A DMI é uma ferramenta mais simples do que a TE, do ponto de vista computacional, pois depende da análise estatística de funções densidades de probabilidades de segunda ordem, enquanto que a TE, de funções de terceira ordem. Dependendo dos recursos computacionais disponíveis, este é um fator que deve ser levado em consideração. Os resultados de atraso da informação são muito bem identificados pela DMI. No entanto, a DMI falha em distinguir a direção do fluxo de informação, quando se tem sistemas com transferência de informação indireta e com sobreposição da informação. Nesses casos, a TE é a ferramenta mais indicada para a determinação da direção do fluxo de informação, devido à dependência condicional imposta pelo histórico comum entre os sinais analisados. Em circuitos neurais, estas questões ocorrem em diversos casos. No gânglio metatorácico de insetos, os interneurônios locais possuem diferentes padrões de caminhos com sobreposição da informação, pois recebem sinais de diferentes neurônios sensores para o movimento das membros locomotores desses animais. O principal objetivo deste trabalho é propor um modelo do circuito neural do inseto, para mapear como os sinais neurais se comportam, quando sujeitos a um conjunto de movimentos aleatórios impostos no membro do inseto. As respostas neurais são reflexos provocados pelo estímulo táctil, que gera o movimento na junção femorotibial do membro posterior. Nestes circuitos neurais, os sinais neurais são processados por interneurônios locais dos tipos spiking e nonspiking que operam em paralelo para processar a informação vinda dos neurônios sensores. Esses interneurônios recebem sinais de entrada de mecanorreceptores do membro posterior e da junção motora dos insetos. A principal característica dos interneurônios locais é a sua capacidade de se comunicar com outros neurônios, tendo ou não a presença de impulsos nervosos (spiking e nonspiking). Assim, forma-se um circuito neural com sinais de entradas (neurônios sensores) e saídas (neurônios motores). Neste trabalho, os algoritmos propostos analisam desde a geração aleatória dos movimentos mecânicos e os estímulos nos neurônios sensores que chegam até o gânglio metatorácico, incluindo suas respostas nos neurônios motores. São implementados os algoritmos e seus respectivos pseudocódigos para a DMI e para a TE. É utilizada a técnica de Surrogate Data para inferir as medidas de significância estatística em relação à máxima coerência de informação entre os sinais neurais. Os resultados a partir dos Surrogate Data são utilizados para a compensação dos erros de desvio das medidas de transferência de informação. Um algoritmo, baseado na IAAFT (Iterative Amplitude Adjusted Fourier Transform), gera os dados substitutos, com mesmo espectro de potência e diferentes distribuições dos sinais originais. Os resultados da DMI e da TE com os Surrogate Data fornecem os valores das linhas de base quando ocorre a mínima transferência de informação. Além disso, foram utilizados dados simulados, para uma discussão sobre os efeitos dos tamanhos das amostras e as forças de associação da informação. Os sinais neurais coletados estão disponíveis em um banco de dados com diversos experimentos no gânglio metatorácico dos gafanhotos. No entanto, cada experimento possui poucos sinais coletados simultaneamente; assim, para diferentes experimentos, os sinais ficam sujeitos às variações de tamanho de amostras, além de ruídos que interferem nas medidas absolutas de transferência de informação. Para se mapear essas conexões neurais, foi utilizada a metodologia baseada na normalização e compensação dos erros de desvio para os cálculos da transferência de informação. As normalizações das medidas utilizam as entropias totais do sistema. Para a DMI, utiliza-se a média geométrica das entropias de X e Y , para a TE aplica-se a CMI (Conditional Mutual Information) para a sua normalização. Após a aplicação dessas abordagens, baseadas no STA e na transferência de informação, apresenta-se o modelo estrutural do circuito neural do sistema neuromotor de gafanhotos. São apresentados os resultados com o STA e a DMI para os neurônios sensores, dos quais são levantadas algumas hipóteses sobre o funcionamento desta parte do FeCO (Femoral Chordotonal Organ). Para cada tipo de neurônio foram identificados múltiplos caminhos no circuito neural, através dos tempos de atraso e dos valores de máxima coerência da informação. Nos interneurônios spiking obtiveram-se dois padrões de caminhos, enquanto que para os interneurônios nonspiking identificaram-se três padrões distintos. Esses resultados são obtidos computacionalmente e condizem com que é esperado a partir dos modelos biológicos descritos em Burrows (1996). / Herein, we present the development of a bioinspired model by the neural circuit of insects. This model is obtained by analyzing the first order from STA (Spike Triggered Average) and the transfer of information among neural signals. Techniques are applied based on the identification of the time delays of the information maximum coherence. For this purpose we use the concepts of the theory of information: DMI (Delayed Mutual Information) and TE (Transfer Entropy). These two approaches have applications on information transfer and each one has peculiarities. The DMI is a simpler tool than the TE, from the computational point of view. Therefore, DMI depends on the statistical analysis of second order probability density functions, whereas the TE depends on third order functions. If computational resources are a problem, those questions can be taken into consideration. The results of the information delay are very effective for DMI. However, DMI fails to distinguish the direction of the information flow when we have systems subjected to indirect information transfer and superposition of the information. In these cases, the TE is the most appropriate tool for determining the direction of the information flow, due to the conditional dependence imposed by a common history among the signals. In neural circuits, those issues occur in many cases. For example, in metathoracic ganglion of insects, the local interneurons have different pathways with superposition of the information. Therefore, the interneurons receive signals from different sensory neurons for moving the animals legs . The main objective of this work is propose a model of the neural circuit from an insect. Additionally, we map the neural signals when the hind leg is subjected to a set of movements. Neural responses are reflexes caused by tactile stimulus, which generates the movement of femoro-tibial joint of the hind leg. In these neural circuits, the signals are processed by neural spiking and nonspiking local interneurons. These types of neurons operate in parallel processing of the information from the sensory neurons. Interneurons receive input signals from mechanoreceptors by the leg and the insect knees. The main feature of local interneurons is their ability to communicate with others neurons. It can occur with or without of the presence of impulses (spiking and nonspiking). Thus, they form a neural circuit with input signals (sensory neurons) and outputs (motor neurons). The proposed algorithms analyze the random generation of movements and mechanical stimuli in sensory neurons. Which are processing in the metathoracic ganglion, including their responses in the motor neurons. The algorithms and the pseudo-code are implemented for TE and DMI. The technique of Surrogate Data is applied to infer the measures of statistical significance related to the information maximum coherence among neural signals. The results of the Surrogate Data are used for bias error compensation from information transfer. An algorithm, based on IAAFT (Iterative Amplitude Adjusted Fourier Transform), generates Surrogate Data with the same power spectrum and different distributions of the original signals. The results of the surrogate data, for DMI and TE, achieve the values of baselines when there are minimum information transfer. Additionally, we used simulated data to discuss the effects of sample sizes and different strengths of information connectivity. The collected neural signals are available from one database based on several experiments of the locusts metathoracic ganglion. However, each experiment has few simultaneously collected signals and the signals are subjected of variations in sample size and absolute measurements noisy of information transfer. We used a methodology based on normalization and compensation of the bias errors for computing the information transfer. The normalization of the measures uses the total entropy of the system. For the DMI, we applied the geometric mean of X and Y . Whereas, for the TE is computed the CMI (Conditional Mutual Information) for the normalization. We present the neural circuit structural model of the locusts neuromotor system, from those approaches based on STA and the information transfer. Some results are presented from STA and DMI for sensory neurones. Then, we achieve some new hypothesis about the neurophisiology function of FeCO. For each type of neuron, we identify multiple pathways in neural circuit through the time delay and the information maximum coherence. The spiking interneurons areyielded by two pathways, whereas the nonspiking interneurons has revealed three distinct patterns. These results are obtained computationally and are consistent with biological models described in Burrows (1996).
|
12 |
Μια νέα διάταξη ασαφών αριθμών και η στοχαστική της επέκταση σε ελέγχους ασαφών υποθέσεων / A novel linear ordering on subsets of fuzzy numbers and its stochastic extension in non parametric testing of fuzzy hypothesesΒάλβης, Εμμανουήλ 04 February 2014 (has links)
Η παρούσα διατριβή εκπονήθηκε με σκοπό να γενικεύσει το πρόβλημα του ελέγχου υποθέσεων που εμπεριέχουν στοχαστική διάταξη στα πλαίσια της Μη Παραμετρικής Στατιστικής. Για τον σκοπό αυτό μελετήθηκε η σχετική βιβλιογραφία, εξετάσθηκε η ορολογία, οι ήδη υπάρχοντες ορισμοί και οι σχετικές προταθείσες μέθοδοι και ακολούθως έγινε προσπάθεια γενίκευσης του προαναφερθέντος προβλήματος. Η έρευνα αυτή απέδωσε δύο ομάδες αποτελεσμάτων. Στην πρώτη, ορίσθηκε μια νέα ολική διάταξη (XFO) σε κάθε σύνολο ασαφών αριθμών που έχουν διαφορετικές κορυφές οι οποίες σχηματίζουν συμπαγές υποσύνολο του ℝ. Η ασαφής αυτή διάταξη αποδίδει την σύγκριση των ασαφών αριθμών με ένα ασαφές μέτρο αναγκαιότητας και με το δυϊκό του μέτρο δυνατότητας. Η σύγκριση αυτής της μεθόδου με την πλέον αναγνωρισμένη αντίστοιχη μέθοδο διάταξης ασαφών αριθμών απέδειξε ότι η εισαχθείσα μέθοδος XFO είναι πιο κοντά στην αρχική μας εκτίμηση για την διάταξη και ανταποκρίνεται πιο αισιόδοξα. Στην δεύτερη ομάδα αποτελεσμάτων εισάγεται η έννοια της στοχαστικής διάταξης ασαφών τυχαίων μεταβλητών, με σύντηξη των ακολούθων εννοιών:
α) της στοχαστικής διάταξης,
β) της ανωτέρω ασαφούς διάταξης και
γ) της εισαγόμενης έννοιας της ασαφούς συνάρτησης κατανομής.
Ο ορισμός της στοχαστικής διάταξης δίδεται σε αρμονία με την μέθοδο XFO, αφού και οι δύο έχουν τις ρίζες τους στην ίδια διάταξη κλειστών διαστημάτων που εισάγεται αρχικά στην εργασία, μπορεί δε να θεωρηθεί η ασαφής στοχαστική διάταξη ως επέκταση της XFO. Η δεύτερη αυτή ομάδα περιλαμβάνει ένα εισαγόμενο για πρώτη φορά τρόπο ορισμού Ασαφών Υποθέσεων που περιέχουν στοχαστική διάταξη ασαφών τυχαίων μεταβλητών. Αυτό έχει αποτέλεσμα να βαθμολογείται θετικά μόνο η μία εκ των δύο ασαφών υποθέσεων, ασαφούς μηδενικής και ασαφούς εναλλακτικής, διευκολύνοντας έτσι την λήψη αποφάσεων. Προτείνεται διαδικασία ασαφούς ελέγχου που πιστοποιεί οποιαδήποτε ενυπάρχουσα στοχαστική διάταξη δύο ασαφών τυχαίων δειγμάτων, συμβατή με τον ορισμό, η οποία αντιστοιχεί θετικές τιμές αλήθειας μόνον στην αποδεκτή υπόθεση και μηδέν στην απορριπτόμενη. Τα αποτελέσματα του ελέγχου εκφράζονται με την βοήθεια δύο μέτρων αναγκαιότητας. Η μείζων συνεισφορά της προτεινόμενης ασαφούς διαδικασίας ελέγχου ασαφών υποθέσεων, που αναφέρονται σε στοχαστική διάταξη ασαφών τυχαίων μεταβλητών, είναι ότι παρέχει εργαλείο μετασχηματισμού του προβλήματος σε ένα περιορισμένο αριθμό ελέγχων κλασσικών υποθέσεων της μη Παραμετρικής Στατιστικής. Με τον τρόπο αυτό μπορούμε να συμβάλουμε στην επίλυση τέτοιων προβλημάτων ασαφών ελέγχων τόσο θεωρητικών ζητημάτων στοχαστικής διάταξης ασαφών τυχαίων μεταβλητών όσο και ενός αριθμού πρακτικών προβλημάτων, όπως της ασαφούς αξιολόγησης εξεταζομένων. / This dissertation has been carried out in order to extend the problem of testing hypotheses on stochastic orderings, with methods based on ranks.
This study provides two sets of related results.
In the first set of results we introduce a novel linear order, the “extended fuzzy order” (XFO), on every subset of F(ℝ), the members of which must have their modal values all different and form a compact subset of ℝ. A distinct new feature is that our linear determined procedure employs the corresponding order of a class interval associated with a confidence measure which assigns a necessity measure value on every comparison .
This new XFO method measures the ordering of any two fuzzy numbers with a possibility and a necessity measure, a feature that makes the method relevant for processing of fuzzy statistical data. These fuzzy measures are compared with the widely accepted PD and NSD indices of D. Dubois and H. Prade. The comparison proves that our possibility and necessity measures are more optimistic and comply better with our intuition.
In the second set of results it is investigated the fuzzy extension of hypotheses testing using non parametric methods based on ranks. To achieve this, the notion of fuzzy distribution function is introduced in a practical manner, which is proved to be equivalent to the known notion of Kruse and Mayer. The stochastic ordering of two fuzzy random samples is defined in a fusion of the notion of stochastic ordering, fuzzy distribution function and XFO method.
A novel definition of fuzzy hypotheses related to a potential fuzzy stochastic order between two fuzzy random samples is given in a new manner so that the null and its alternative hypotheses do not overlap. Consequently, the method assigns positive possibility grades either to the null fuzzy hypothesis or to the its fuzzy alternative. This simplifies the fuzzy decision making, and moreover there is no need to defuzzify the results if a clear cut decision is required.
A fuzzy statistical inference procedure of fuzzy hypotheses is proposed and it is carried out at a fuzzy significance level. The definition of a fuzzy critical value is required, which is carried out in a practical manner.
The proposed method certifies any underlying stochastic fuzzy order between two fuzzy random samples giving grades of confidence to that.
Two necessity measures are assigned to the rejection of the fuzzy null hypothesis in favor of its alternative. The first measures the necessity of the existence of any fuzzy stochastic ordering between the fuzzy random samples under examination. The second necessity measure expresses the confidence of the fuzzy null hypothesis rejection uniformly for all relevant α-cut levels.
The main contribution of this thesis, as far as the second set of results is concerned, is that a problem of testing fuzzy hypotheses on stochastic orderings of fuzzy random variables at a fuzzy significance level, is transferred to a limited number of tests of classic hypotheses. These tests are carried out at a fuzzy significance level, and are processed with the application of the linear fuzzy ordering procedure XFO.
|
13 |
Statistical InferenceChou, Pei-Hsin 26 June 2008 (has links)
In this paper, we will investigate the important properties of three major parts of statistical inference: point estimation, interval estimation and hypothesis testing. For point estimation, we consider the two methods of finding estimators: moment estimators and maximum likelihood estimators, and three methods of evaluating estimators: mean squared error, best unbiased estimators and sufficiency and unbiasedness. For interval estimation, we consider the the general confidence interval, confidence interval in one sample, confidence interval in two samples, sample sizes and finite population correction factors. In hypothesis testing, we consider the theory of testing of hypotheses, testing in one sample, testing in two samples, and the three methods of finding tests: uniformly most powerful test, likelihood ratio test and goodness of fit test. Many examples are used to illustrate their applications.
|
Page generated in 0.0482 seconds