• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 42
  • 30
  • 24
  • 9
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 270
  • 42
  • 35
  • 29
  • 27
  • 25
  • 24
  • 24
  • 22
  • 22
  • 22
  • 22
  • 20
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Improvement of lithium-ion battery performance by control of electrode electrolyte interface / 電極電解質界面の制御によるリチウムイオン二次電池の性能向上

Kusachi, Yuki 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第22547号 / 人博第950号 / 新制||人||226(附属図書館) / 2019||人博||950(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 吉田 寿雄, 准教授 戸﨑 充男 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
92

Aplikace a vlastnosti silikonových zátěrů tkanin / Application and properties of silicone textile coatings

Bernátová, Silvia January 2020 (has links)
The diploma thesis in the first part deals with a theoretical description of coating technologies, textile materials used in coatings, types of coated polymers and properties of coatings - especially adhesion. The experimental part of the work is devoted to the preparation of textile coatings from polyester fabric and coating based on addition silicone. Using the developed method of sample preparation for T-peel testing of the adhesive strength, the improvement of the adhesion of the coating by chemical adhesion with the support of adhesive agents was studied. The second method studied the change in compactness and adhesion of the coating to the fabric after shaking as a function of breathability. The influence of side reactions of reagents on silicone cohesion was studied by preparing dogbones for testing tensile-deformation properties. The research also included the characterization of silicone samples using ATR-FTIR, monitoring the weight gain and thickness of the fabric after coating, the feel and color stability of the applied fabric and observing the coating under an optical microscope.
93

Synthesis and characterization of molecules for electron transfer research.

Xiao, Wu 12 1900 (has links)
Dimethoxynaphthalene (donor) and quinone (acceptor) have been chosen as a suitable redox pair and are bonded to either permethylated silane chains or corresponding permethylated alkyl chains to form Acceptor-(Bridge)-Donor molecules. The idea that the s-delocalization phenomenon of silane chains may greatly facilitate ET reactions will be tested. The starting material for the donor precursor, 4-(1,4-dimethoxynaphthyl)bromocyclohexane, was 1,4-naphthoquinone. After methylation and bromination, the Grignard reagent of the resulting bromide was reacted with cyclohexanedione, mono ethylene ketal. The resulting alcohol was changed to the donor precursor through the following functional group transformation steps: dehydration, hydrogenation, deketalization and bromination. 1,4-Dibenzyloxybromobenzene, the precursor for the acceptor, was synthesized from 1,4-hydroquinone through bromination and benzylation. The connection of the two precursors and either permethylated silane chains or permethylated alkyl chains will give the final target molecules for ET research. Progress on this is included.
94

Efforts Towards the Synthesis of Silanes for Their Use in Catalysis and as Molecular Wires

Mohd, Noushad January 2020 (has links)
The Leighton group has long been interested in developing strained silanes for their use in polyketide synthesis. Recently, our interests have led us to develop a new type of silicon Lewis acid and catalyst with high levels of reactivity. Upon activation with a thiourea, a stabilized silylium ion is formed allowing for the facile allylation of aldehydes and ketones, in addition to Diels-Alder catalysis. This represents one of the first examples of the merger between anion-binding catalysis and silylium ion catalysis. Our group’s interest in strained silanes has also led us to investigate their conductance properties in molecular break junctions. To further understand the nature of the bond-ruptured species we have proposed new synthetic targets and have described herein our progress towards synthesizing these targets.
95

Application of Alkylsilane Self-Assembled Monolayers for Cell Patterning and Development of Biolocial Microelectromechanical Systems

Wilson, Kerry 01 January 2009 (has links) (PDF)
Advances in microfabrication and surface chemistry techniques have provided a new paradigm for the creation of in vitro systems for studying problems in biology and medicine in ways that were previously not practical. The ability to create devices with micro- to nano-scale dimensions provides the opportunity to non-invasively interrogate and monitor biological cells and tissue in large arrays and in a high-throughput manner. These systems hold the potential to, in time, revolutionize the way problems in biology and medicine are studied in the form of point-of-care devices, lab-on-chip devices, and biological microelectromechanical systems (BioMEMS). With new in vitro models, it will be possible to reduce the overall cost of medical and biological research by performing high-throughput experiments while maintaining control over a wide variety of experimental variables. A critical aspect of developing these sorts of systems, however, is controlling the device/tissue interface. The surface chemistry of cell-biomaterial and protein-biomaterial interactions is critical for long-term efficacy and function of such devices. The work presented here is focused on the application of surface and analytical chemistry techniques for better understanding the interface of biological elements with silica substrates and the development a novel Bio-MEMS device for studying muscle and neuromuscular biology. A novel surface patterning technique based on the use of a polyethylene glycol (PEG) silane self-assembled monolayer (SAM) as a cytophobic surface and the amine-terminated silane diethyeletriamine (DETA) as a cytophilic surface was developed for patterning a variety of cell types (e.g. skeletal muscle, and neural cells) over long periods of time (over 40 days) with high fidelity to the patterns. This method was then used to pattern embryonic rat skeletal muscle and motor neurons onto microfabricated silicon cantilevers creating a novel biological microelectromechanical system (BioMEMS) for studying muscle and the neuromuscular junction. This device was then used to study the effect of exogenously applied substances such as growth factors and toxins. Furthermore, a whispering-gallery mode (WGM) biosensor was developed for measuring the adsorption of various proteins onto glass microspheres coated with selected silane SAMS commonly used in BioMEMS system. With this biosensor it was possible to measure the kinetics of protein adsorption onto alkylsilane SAMS, in a real-time and label-free manner.
96

Photocycloaddition of Allenes

Ward, Crystal 07 November 2008 (has links) (PDF)
For the past ten years the Fleming research group has been involved in the research of allene compounds. We have explored the synthesis of allenes as well as several reactions involving allenes, such as oxidation and nitrene addition. Recently, we have explored the synthesis and photochemistry of allenic alcohols tethered to silicon. There are literature examples using allenes in synthesis, but very few examples exist using allenes in photochemical cycloaddition reactions. We have found that a diisopropylallenyloxy(cinnamyloxy)silane derivative undergoes [2+2] photochemical cycloaddition to produce a cyclobutylsilane product when irradiated for 60-75 minutes.
97

Chemical Vapor Deposition of Silanes and Patterning on Silicon

Zhang, Feng 15 December 2010 (has links) (PDF)
Self assembled monolayers (SAMs) are widely used for surface modification. Alkylsilane monolayers are one of the most widely deposited and studied SAMs. My work focuses on the preparation, patterning, and application of alkysilane monolayers. 3-aminopropyltriethoxysilane (APTES) is one of the most popular silanes used to make active surfaces for surface modification. To possibly improve the surface physical properties and increase options for processing this material, I prepared and studied a series of amino silane surfaces on silicon/silicon dioxide from APTES and two other related silanes by chemical vapor deposition (CVD). I also explored CVD of 3-mercaptopropyltrimethoxysilane on silicon and quartz. Several deposition conditions were investigated. Results show that properties of silane monolayers are quite consistent under different conditions. For monolayer patterning, I developed a new and extremely rapid technique, which we termed laser activation modification of semiconductor surfaces or LAMSS. This method consists of wetting a semiconductor surface with a reactive compound and then firing a highly focused nanosecond pulse of laser light through the transparent liquid onto the surface. The high peak power of the pulse at the surface activates the surface so that it reacts with the liquid with which it is in contact. I also developed a new application for monolayer patterning. I built a technologically viable platform for producing protein arrays on silicon that appears to meet all requirements for industrial application including automation, low cost, and high throughput. This method used microlens array (MA) patterning with a laser to pattern the surface, which was followed by protein deposition. Stencil lithography is a good patterning technique compatible with monolayer modification. Here, I added a new patterning method and accordingly present a simple, straightforward procedure for patterning silicon based on plasma oxidation through a stencil mask. We termed this method subsurface oxidation for micropatterning silicon (SOMS).
98

Adhesion of Silicone Hydrogel to Silicate Substrates

Liu, Chang Jr January 2016 (has links)
The challenge of demolding during the cast molding process of silicone hydrogel contact lenses can be addressed with the application of hydrophobic coatings on the surface of lens mold. In particular, the adhesion between silicone hydrogel and silicate substrates was minimized by applying silane modification on the surface of silicate substrates. Peel tests were conducted to measure the adhesive strengths between silicone hydrogel and surface modified glass substrates. Water contact angle measurement and X-ray photoelectron spectroscopy (XPS) were utilized to characterize the surface properties of silane treated glass substrates.Silicone hydrogel was obtained by curing macromer mixture under UV for 6 minutes, with UV intensity of 95.0 mW/cm2. The obtained silicone hydrogel had a modulus of 0.87±0.09 MPa, within the same range of commercial contact lenses. And the hydrogel with a UV curing time of 6 minutes was unable to be peeled off from clean glass substrates. The effects of silane type and concentration on coating effectiveness were investigated and the most effective types of silane were found to be triethoxyphenylsilane (TEPhS) and octyltriethoxysilane (OTES), with an optimal concentration of 5 wt%. The peel strength between silicone hydrogel and silicate substrates was reduced to below 15.5 N/m with the application of TEPhS and OTES coatings. However, these silane coatings were not durable enough. Silane coupling agents need to be reapplied before each curing process of silicone hydrogel. / Thesis / Master of Applied Science (MASc)
99

Silane Based Radical Polymerization: Functionalized Homopolymers and Copolymers

Stefanac, Tomislav 09 1900 (has links)
<p> This thesis presents a study on silane based polymerization in two parts. </p> <p> In Part A, diphenylvinylsilane (1) underwent oligomerization with initiation by azo(bisisobutyronitrile) (AIBN) or benzoyl peroxide (BPO). The vinyl groups were preferentially consumed under either set of conditions. Several products were isolated; these included oligomers 3, an AIBN adduct 4, a dimer 5, and a trimer 6. The residual SiH moieties could be subsequently coupled hydrosilylatively with alkynes or vinylsilicones. The efficiency of the radical reactions was very low. 15% starting material was recovered even with 200 mol% of initiating radicals added to the reaction mixture. The relative radical reactivities of the two functional groups is discussed.</p> <p> In Part B, 1 was radically copolymerized with styrene and methyl methacrylate (MMA). From the results of infrared and 1H NMR it was determined that 1 participated in copolymerization via a vinyl type polymerization and not in the form of a hydrogen-transfer type polymerization. Residual SiH groups along the backbone of the polymer remained reactive. A vinylsilicone and 9-vinylanthracene were grafted onto the copolymer from MMA and 1 by hydrosilylation and radical methods, respectively.</p> / Thesis / Master of Science (MSc)
100

Aqueous Processing of Corrosion Inhibiting Hybrid Nanocomposite Bulk Coating

Cain, Robert J. 04 April 2006 (has links)
No description available.

Page generated in 0.066 seconds