• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amélioration des propriétés mécaniques du béton à partir de l'insertion des nanotubes de carbone : une étude par la dynamique moléculaire / Improving mechanical properties of concrete from inserted carbon nanotubes : a molecular dynamics study

Lushnikova, Anna 22 May 2017 (has links)
La production de nouvelles générations de béton avec des propriétés physiques, structurales et techniques améliorées est très importante, mais elle n'est pas possible sans utiliser divers types d'additifs. Les nanotubes de carbone sont des matériaux prometteurs qui possèdent des propriétés spécifiques permettant leurs utilisations pour une grande variété de matériaux composites, y compris le béton. Certaines études expérimentales ont révélé que les nanotubes de carbone peuvent améliorer les propriétés mécaniques du béton avec une petite quantité d'additifs, en fournissant une structure moins défectueuse de la matrice de ciment. Cependant, les résultats sont encore insuffisants et nécessitent d'être élucidés sur les processus se produisant à l'échelle nanométrique dans la structure en béton modifiée par les nanotubes de carbone. Ainsi, cette thèse, a pour objectif principal l'étude de l'amélioration des propriétés mécaniques du béton modifié par les nanotubes de carbone. Afin de modéliser la structure atomique du gel de la Silicate de Calcium Hydratée, nous avons choisi la tobermorite 11Å avec deux rapports différents de Ca/Si correspondants à 0,83 et 1. Divers types de nanotubes incorporés sont testés pour étudier les propriétés mécaniques du nouveau composite résultant. En outre, l'effet de la concentration de nanotubes de carbone dans le ciment est également détaillé. Enfin, nous étudions l'effet de la pression uniaxial sur la structure du béton incluant des nanotubes de carbone. Nos travaux montrent qu'il possible d'améliorer les caractéristiques mécaniques du béton en insérant des nanomatériaux en général, et des nanotubes de carbone en particulier. / The production of new generations of concrete with improved physical, structural and technical properties is very important, but it is not possible without the use of various types of additives. Carbon nanotubes are promising materials that possess specific properties allowing their uses for a wide variety of composite materials, including concrete. Some experimental studies have revealed that carbon nanotubes can improve the mechanical properties of concrete with a small amount of additives, providing a less defective structure of the cement matrix. However, the results are still insufficient and need to be elucidated on the processes occurring at the nano-scale in the concrete structure modified by carbon nanotubes. Thus, this thesis has as main objective the study of the improvement of the mechanical properties of the concrete modified by the carbon nanotubes. In order to model the atomic structure of the Calcium Silicate Hydrates gel, tobermorite 11Å was selected with two different Ca/Si ratios corresponding to 0.83 and 1. Various types of nanotubes incorporated into the tobermorite 11Å structure were tested to study mechanical properties of the resulting new composite. In addition, the effect of the concentration of carbon nanotubes in the cement was also detailed. Finally, we studied the effect of uniaxial pressure on the concrete structure including carbon nanotubes. The work concludes that it is possible to improve the mechanical characteristics of concrete by inserting nano-materials in general, and carbon nanotubes in particular.
2

Effects of cement organic additives on the adsorption of uranyl ions on calcium silicate hydrate phases : experimental determination and computational molecular modelling / Effets des additifs organiques du ciment sur l’adsorption des ions uranyles sur de silicate de calcium hydraté : détermination expérimentale et modélisation moléculaire

Androniuk, Iuliia 20 February 2017 (has links)
Les matériaux cimentaires sont largement utilisés dans la conception et la construction des sites de stockage de déchets radioactifs. Une des manières d’améliorer leur performance est d’introduire des adjuvants organiques dans la structure. La présence de matière organique dans l’eau porale peut affecter la mobilité des radionucléides : les molécules organiques forment des complexes solubles et peuvent être en compétition avec les radionucléides au niveau des sites de sorption. Ce travail avait pour but de comprendre les mécanismes de telles interactions au niveau moléculaire. Le système modèle a trois composantes. D’abord, des phases C-S-H ont été choisies en tant que modèles du ciment.Ensuite, le gluconate est sélectionné en tant que modèle d’additif organique pour sonder les mécanismes d’interaction à l’échelle moléculaire. Un système plus complexe impliquant un superplastifiant (PCE) a été testé. La troisième espèce, U(VI), est représentative d’un radionucléide de la série des actinides. Le développement de la description des effets de postproduction des espèces organiques pour les applications de stockage des déchets radioactifs était l’objectif principal de ce travail. L’étude des systèmes binaires fournit des données de référence pour l’investigation de systèmes ternaires C-S-H/matière organique/U(VI) plus complexes. Des cinétiques et des isothermes de sorption/désorption pour les espèces sur les C-S-H sont mesurés. En parallèle, des modèles atomiques ont été développés pour les interfaces d’intérêt. Les aspects structuraux, énergétiques et dynamiques des processus de sorption sur les surfaces de ciment sont modélisés par la technique de la dynamique moléculaire. / Cementitious materials are extensively used in the design and construction of radioactive waste repositories. One of the ways to enhance their performance is to introduce organic admixtures into the cement structure. However, the presence of organics in the pore water may affect the radionuclide mobility: organic molecules can form water-soluble complexes and compete for sorption sites. This work was designed to get detailed understanding of the mechanisms of such interactions on the molecular level. The model system has three components. First, pure C-S-H phases with different Ca/Si ratios were chosen as a cement model. Secondly, gluconate (a simple well-described molecule) is selected as a good starting organic additive model to probe the interaction mechanisms on the molecular scale. A more complex system involving polycarboxylate superplasticizer (PCE) was also tested. The third, U (VI), is a representative of the actinide radionuclide series. The development of description of the effects of organics for radioactive waste disposal applications was the primary objective of this work. The study of binary systems provides reference data for the investigation of more complex ternary (C-S-H/organic/U(VI)). The interactions are studied by means of both experimental and computational molecular modelling techniques. Data on sorption and desorption kinetics and isotherms for additives and for U (VI) on C-S-H are acquired in this work. In parallel, atomistic models are developed for the interfaces of interest. Structural, energetic, and dynamic aspects of the sorption processes on surface of cement are quantitatively modeled by molecular dynamics technique.
3

Modélisation multi échelle des phénomènes de retrait et de fluage dans les matériaux cimentaires : approches numériques couplant les éléments finis et la méthode de Lattice-Boltzmann / multi-scale modelling of the shrinkage and creep phenomena of cementitious materials : a combined Finite Elements-Lattice Boltzmann-numerical approach

Adia, Jean-Luc 28 November 2017 (has links)
Dans les structures en béton précontraint, les phénomènes de fluage et de retrait tendent à réduire les efforts de précontrainte initialement prévus pour maintenir le béton dans un état minimisant les forces de traction et donc la fissuration. La compréhension et la prédiction de ces phénomènes par le biais de modèles sont donc primordiales pour la conception et la maintenance à long terme des ouvrages du génie civil tels que les enceintes de confinement des centrales nucléaires.L’objectif de cette thèse est d’élaborer un cadre de modélisation micromécanique pour décrire de manière unifiée le retrait et le fluage dans les matériaux cimentaires. Pour cela, l’étude se base sur l’échelle de la microstructure poreuse du gel de C-S-H où les mécanismes intrinsèques de ces déformations différées du béton opèrent. Une approche d’homogénéisation numérique modélisant ces phénomènes dans des microstructures poreuses à morphologies quelconques est développée. Une description explicite du réseau poreux ainsi que de la phase liquide de l’eau pendant les processus de séchage/humidification est prise en compte. Les mécanismes concernant lesdéformations différées dans la phase solide sont modélisés par la théorie de la microprécontrainte-solidification (MPS). Les simulations à l’échelle microscopique sont réalisées par une approche originale couplant la méthode de Lattice Boltzmann (LBM) et la méthode des éléments finis (FEM). La LBM est utilisée pour décrire la distribution du liquide capillaire à l’échelle du pore,tandis que la FEM est employée pour simuler la déformation du squelette solide sous l’action combinée de l’eau dans l’espace poreux et d’un chargement macroscopique.La démarche proposée permet, au travers des simulations, de mieux comprendre les mécanismes liés à la non saturation et aux effets capillaires dans les milieux poreux. En particulier, la prise en compte de morphologies réalistes de microstructures et des ménisques formés conduit à différents régimes de retrait/gonflement. Ainsi les effets de l’intensité de la pression capillaire,de la tension de surface et des surfaces de chargement sur la réponse élastique du squelette solide sont évalués. Enfin, nous proposons une extension des approches précédentes au cas d’un squelette viscoélastique se déformant sous les effets de la pression capillaire et des tensions de surface. A partir des observations numériques réalisées, nous proposons un modèle pour décrire le fluage et le retrait du gel de C-S-H de manière unifiée / In pre-stressed concrete structures, creep and shrinkage tend to reduce the pre-stress forces which are initially produced so as to maintain concrete in a state minimizing traction forces and then cracks. Understanding and predicting these phenomena through models are thus highly important for the design and durability of civil engineering structures, such as containment buildings in nuclear power plants.The objective of this thesis is to develop a micromechanical modeling framework to describe shrinkage and creep in cementitious materials in a unified manner. For this purpose, the study focuses on the scale of the porous structure of the C-S-H gel where the intrinsic mechanisms of delayed strains are active. A computational homogenization approach is developed to model these phenomena in porous structures with arbitrary morphologies. An explicit description of the porous network and of the liquid phase of water during the drying/humidification process is taken into account. The mechanisms related to delayed strains in the solid phase are modeled by the microprestress-solidification theory (MPS). The simulations at the microscale are conductedbased on an original approach coupling the Lattice Boltzmann method (LBM) and the finite element method (FEM). The LBM is used to describe the distribution of capillary water in the porous structure, whereas the FEM serves as modeling the strain of the solid skeleton under the capillary water effets and a macroscopic load.The proposed method allows, by means of the simulations, to better understand the mechanisms related to the capillary effects in the porous structure. More specifically, taking into account realistic morphologies of microstructures and of the formed menisci lead to different regimes of shrinkage/swelling. Then, the effects of capillary pressure intensity, of surface tension and of morphologies of capillary surfaces on the elastic response of the solid skeleton are evaluated. Finally, the above approaches are extended to the case of a viscoelastic solid deformed under the action of the capillary water. From numerical observations, we propose a model is proposed to describe the creep and shrinkage of C-S-H gel in a unified way

Page generated in 0.0718 seconds