• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and characterization of silicon micromechanical resonators

Ho, Gavin Kar-Fai 07 July 2008 (has links)
The need for miniaturized frequency-selective components in electronic systems is clear. The questions are whether and how micro-electro-mechanical systems (MEMS) can satisfy the need. This dissertation aims to address these questions from a scientific perspective. Silicon is the focus of this work, as it can benefit from scaling of the semiconductor industry. Silicon also offers many technical advantages. The characteristics of silicon resonators from 32 kHz to 1 GHz are described. The temperature stability and phase noise of a 6-MHz temperature-compensated oscillator and a 100-MHz temperature-controlled oscillator are reported. Silicon resonator design and characterization, with a focus on quality factor, linearity, and the electrical equivalent circuit, are included. Electrical tuning, electromechanical coupling, finite element modeling, and unexpected findings of these resonators are also described. A manufacturability technique employing batch process compensation is demonstrated. Results indicate that silicon is an excellent material for micromechanical resonators. The aim of this research is to explore the fundamental limitations, provide a foundation for future work, and also paint a clearer picture on how micromechanical resonators can complement alternative technologies.
2

High frequency capacitive single crystal silicon resonators and coupled resonator systems

Pourkamali, Siavash 11 October 2006 (has links)
The objective of the work presented in this thesis is to implement high-Q silicon capacitive micromechanical resonators operating in the HF, VHF and UHF frequency bands. Several variations of a fully silicon-based bulk micromachining fabrication process referred to as HARPSS have been developed, characterized and optimized to overcome most of the challenges facing application of such devices as manufacturable electronic components. Several micromechanical structures for implementation of high performance capacitive silicon resonators covering various frequency ranges have been developed under this work. Design criteria and electromechanical modeling of such devices is presented. Under this work, HF and VHF resonators with quality factors in the tens of thousands and RF-compatible equivalent electrical impedances have been implemented successfully. Resonance frequencies in the GHz range with quality factors of a few thousands and lowest motional impedances reported for capacitive resonators to date have been achieved. Several resonator coupling techniques for implementation of higher order resonant systems with possibility of extension to highly selective bandpass filters have been investigated and practically demonstrated. Finally, a wafer-level vacuum sealing technique applicable to such resonators has been developed and its reliability and hermeticity is characterized.

Page generated in 0.0876 seconds