• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polymer-Based Wafer-Level Packaging of Micromachined HARPSS Devices

Monadgemi, Pezhman 18 May 2006 (has links)
This thesis reports on a new low-cost wafer-level packaging technology for microelectromechanical systems (MEMS). The MEMS process is based on a revised version of High Aspect Ratio Polysilicon and Single Crystal Silicon (HARPSS) technology. The packaging technique is based on thermal decomposition of a sacrificial polymer through a polymer overcoat followed by metal coating to create resizable MEMS packages. The sacrificial polymer is created on top of the active component including beams, seismic mass, and electrodes by photodefining, dispensing, etching, or molding. The low loss polymer overcoat is patterned by photodefinition to provide access to the bond pads. The sacrificial polymer decomposes at temperatures around 200-280aC and the volatile products permeate through the overcoat polymer leaving an embedded air-cavity. For MEMS devices that do not need hermetic packaging, the encapsulated device can then be handled and packaged like an integrated circuit. For devices that are sensitive to humidity or need vacuum environment, hermiticity is obtained by deposition and patterning thin-film metals such as aluminum, chromium, copper, or gold. To demonstrate the potential of this technology, different types of capacitive MEMS devices have been designed, fabricated, packaged, and characterized. These includes beam resonators, RF tunable capacitors, accelerometers, and gyroscopes. The MEMS design includes mechanical, thermal, and electromagnetic analysis. The device performance, before and after packaging is compared and the correlation to the model is presented. The following is a summary of the main contributions of this work to the extensive research focused on MEMS and their packaging: 1)A new low-cost wafer-level packaging method for bulk or surface micromachined devices including resonators, RF passives and mechanical sensors is reported. This technique utilizes thermal decomposition of a sacrificial polymer through an overcoat polymer to create buried channels on top of the resonant/movable parts of the micromachined device. It provides small interconnections together with resizable package dimensions. We report MEMS package thicknesses in the range of 10 mm to 1 mm, and package size from 0.0001 mm to 1 mm. 2)A revised version of the HARPSS technology is presented to implement high aspect ratio silicon capacitors, resonators and inertial sensors in the smallest area.
2

Compensation and trimming for silicon micromechanical resonators and resonator arrays for timing and spectral processing

Samarao, Ashwin Kumar 04 April 2011 (has links)
This dissertation reports very novel solutions for the trimming and compensation of various parameters of silicon micromechanical resonators and resonator-arrays. Post-fabrication trimming of resonance frequency to a target value is facilitated by diffusing in a deposited thin metal layer into a Joule-heated silicon resonator. Up to ~400 kHz of trimming-up and trimming-down in a 100 MHz Silicon Bulk Acoustic Resonators (SiBARs) are demonstrated via gold and aluminum diffusion respectively. The dependence of the trimming range on the duration of Joule heating and value of current passed are presented and the possibility of extending the trimming range up to ~4 MHz is demonstrated. Passive temperature compensation techniques are developed to drastically reduce the temperature coefficient of frequency (TCF) of silicon resonators. The dependence of TCF on the charge carriers in silicon are extensively studied and exploited for the very first time to achieve temperature compensation. A charge surplus via degenerate doping using boron and aluminum is shown to reduce a starting TCF of -30 ppm/°C to -1.5 ppm/°C while a charge depletion effected by creating multiple pn-junctions reduces the TCF to -3 ppm/°C. Further, shear acoustic waves in silicon microresonators have also been identified to effect a TCF reduction and have been excited in a concave SiBAR (or CBAR) to exhibit a TCF that is 15 ppm/°C lesser than that of a conventional rectangular SiBAR. The study on quality factor (Q) sensitivity to the various crystallographic axis of transduction in silicon resonators show that the non-repeatability of Q across various fabrication batches are due to the minor angular misalignment of ≤ 0.5° during the photolithography processes. Preferred axes of transduction for minimal misalignment sensitivity are identified and novel low-loss resonator-array type performances are also reported from a single resonator while transduced along certain specific crystallographic axes. Details are presented on an unprecedented new technique to create and fill charge traps on the silicon resonator which allows the operation of the capacitive SiBARs without the application of any polarization voltages (Vp) for the first time, making them very attractive candidates for ultra-low-power oscillator and sensor applications. Finally, a fabrication process that integrates both the capacitive and piezoelectric actuation/sensing schemes in microresonators is developed and is shown to compensate for the parasitics in capacitive silicon resonators while maintaining their high-Q.
3

Micromachined capacitive silicon bulk acoustic wave gyroscopes

Johari, Houri 18 November 2008 (has links)
Micromachined gyroscopes are attractive replacements to conventional macro-mechanical and optical gyroscopes due to their small size, low power and low cost. The application domain of these devices is quickly expanding from automotive to aerospace and consumer electronics industries. As potential high volume consumer applications for micromachined gyroscopes continue to emerge, design and manufacturing techniques that improve their performance, shock survivability and reliability without driving up the cost and size become important. Today, state-of-the-art micromachined gyroscopes can achieve high performance with low frequency operation (3-30kHz) but at the cost of large form factor, large operating voltages and high vacuum packaging. At the same time, most consumer applications require gyroscopes with fast response time and high shock survivability, which are generally unavailable in low frequency gyroscopes. As a result, innovative designs and fabrication technologies that will offer more practical gyroscopes are desired. In this dissertation, capacitive bulk acoustic wave (BAW) silicon disk gyroscopes are introduced as a new class of micromachined gyroscope to investigate the operation of Coriolis-based vibratory gyroscopes at high frequency and further meet consumer electronics market demands. Capacitive BAW gyroscopes, operating in the frequency range of 1-10MHz are stationary devices with vibration amplitudes less than 20nm, resulting in high device bandwidth and high shock tolerance. They require low operating voltages, which simplifies the interface circuit design and implementation in standard CMOS technologies. They also demonstrate appropriate thermally stable performance in air, which eliminates the need both for vacuum packaging and for temperature control. A revised high aspect ratio poly- and single crystal silicon (HARPSS) process was utilized to implement these devices in thick SOI substrates with very small capacitive gap sizes (~200 nm). The prototype devices show ultra-high quality factors (Q>200,000) and large bandwidth of 15-30Hz. In addition, the design and implementation of BAW disk gyroscopes are optimized for self-matched mode operation. Operating a vibratory gyroscope in matched mode is a straightforward way to improve performance parameters but, is challenging to achieve without applying large voltages. In this work, self-matched mode operation was provided by enhanced design of the perforations of the disk structure. Furthermore, a multi-axis BAW gyroscope, an extension of the z-axis, is developed. This novel approach avoids the issues associated with integrating multiple proof masses, permitting a very small form factor. The multi-axis gyroscopes operate in out-of plane and in-plane modes to measure the rotation rate around the x- and z-axes. These gyroscopes were also optimized to achieve self-matched mode operation in their both modes.
4

High frequency capacitive single crystal silicon resonators and coupled resonator systems

Pourkamali, Siavash 11 October 2006 (has links)
The objective of the work presented in this thesis is to implement high-Q silicon capacitive micromechanical resonators operating in the HF, VHF and UHF frequency bands. Several variations of a fully silicon-based bulk micromachining fabrication process referred to as HARPSS have been developed, characterized and optimized to overcome most of the challenges facing application of such devices as manufacturable electronic components. Several micromechanical structures for implementation of high performance capacitive silicon resonators covering various frequency ranges have been developed under this work. Design criteria and electromechanical modeling of such devices is presented. Under this work, HF and VHF resonators with quality factors in the tens of thousands and RF-compatible equivalent electrical impedances have been implemented successfully. Resonance frequencies in the GHz range with quality factors of a few thousands and lowest motional impedances reported for capacitive resonators to date have been achieved. Several resonator coupling techniques for implementation of higher order resonant systems with possibility of extension to highly selective bandpass filters have been investigated and practically demonstrated. Finally, a wafer-level vacuum sealing technique applicable to such resonators has been developed and its reliability and hermeticity is characterized.
5

Interface circuits for readout and control of a micro-hemispherical resonating gyroscope

Mayberry, Curtis Lee 12 January 2015 (has links)
Gyroscopes are inertial sensors that measure the rate or angle of rotation. One of the most promising technologies for reaching a high-performance MEMS gyroscope has been development of the micro-hemispherical shell resonator. (μHSR) This thesis presents the electronic control and read-out interface that has been developed to turn the μHSR into a fully functional micro-hemispherical resonating gyroscope (μHRG) capable of measuring the rate of rotation. First, the μHSR was characterized, which both enabled the design of the interface and led to new insights into the linearity and feed-through characteristics of the μHSR. Then a detailed analysis of the rate mode interface including calculations and simulations was performed. This interface was then implemented on custom printed circuit boards for both the analog front-end and analog back-end, along with a custom on-board vacuum chamber and chassis to house the μHSR and interface electronics. Finally the performance of the rate mode gyroscope interface was characterized, showing a linear scale factor of 8.57 mv/deg/s, an angle random walk (ARW) of 34 deg/sqrt(hr) and a bias instability of 330 deg/hr.

Page generated in 0.029 seconds