• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Higher olefin epoxidation on silver a combined experimental/theoretical investigation of surface intermediates and reaction mechanisms /

Enever, Michael C. N. January 2006 (has links)
Thesis (Ph. D.)--University of Delaware, 2006. / Principal faculty advisor: Mark A. Barteau, Dept. of Chemical Engineering. Includes bibliographical references.
2

New asymmetric metal-catalysed addition processes for amine synthesis

Franchino, Allegra January 2017 (has links)
This thesis concerns the development of novel catalytic approaches for the construction of stereocentres bearing a nitrogen atom. In 2011, the Dixon group reported a Ag(I)/cinchona-derived amino phosphine catalytic system for the activation of isocyanoacetates in asymmetric aldol and Mannich reactions. During this thesis work it was sought to extend the scope of this catalytic system to Mannich additions of other isocyanide pronucleophiles, then the focus was broadened to include Reformatsky and α-alkylation reactions of ketimine substrates. Chapter 1 gives an overview of the state of the art with particular emphasis on catalytic enantioselective additions to ketimines and the use of activated isocyanides as pronucleophiles. Chapter 2 describes the application of the Ag-catalysed enantio- and diastereoselective aldol reaction of isocyanoacetates to the concise asymmetric synthesis of the antibiotic chloramphenicol, which possesses a chiral stereodefined α-amino β-hydroxy motif. Chapter 3 details our efforts to expand the scope of the Ag(I)/amino phosphine catalytic system to the activation of more challenging isocyanides lacking an electron-withdrawing group in the α-position by investigating aldol and Mannich reactions of benzyl isocyanide. Chapter 4 describes how the scope of the Ag(I)/amino phosphine catalytic system was successfully extended to another pronucleophile, the versatile p-toluenesulfonylmethyl isocyanide (TosMIC). The first catalytic enantio- and diastereoselective addition of TosMIC to N-diphenylphosphinoyl (N-DPP) ketimines was developed, affording 2-imidazolines possessing two contiguous stereocentres with high yields and excellent levels of stereocontrol. Chapter 5 describes the development of a Ni(II)-catalysed Reformatsky reaction of N-DPP ketimines with ethyl bromoacetate and diethylzinc, providing racemic amines bearing a quaternary stereocentre in the α-position in good yields. Chapter 6 reports the serendipitous discovery of the α-alkylation of N-DPP ketimines with ethyl bromoacetate using visible light photoredox catalysis. The transformation, catalysed by ruthenium(II) and nickel(II) complexes under mild conditions, was optimised, its scope assessed and the mechanism investigated.
3

Development of New Biarylphosphane Coinage Metal Complexes for the Regioselective Synthesis of Fused Carbocycles

Levesque, Patrick Pierre 02 October 2012 (has links)
In the last century, no less than five nobel prizes have been awarded for the construction of carbon-carbon bonds : The Grignard reaction (1912), the Diels-Alder reaction (1950), the Wittig reaction (1979), Olefin metathesis (2005) and palladium cross-coupling reactions (2011). The latter two are transition metal catalyzed transformations and their impact on the synthesis of pharmaceutically active compounds, bulk chemicals, fine chemicals, high tech materials as well as agricultural chemicals has been phenomenal. These reactions have changed the way the scientific community views the science of synthesis. Unlike palladium, gold has long been considered to be an expensive and inert metal and therefore, research on Au catalysis was scarse until the begining of the new millenium. Once the scientific community realized the treasure trove of reactivity that gold had to offer, the number of chemical transformations as well as total syntheses involving Au(I)/Au(III) catalysis has sky rocketed. A methodology initially developped by Toste and coworkers has shown that intramolecular addition of a silyl enol ether on alkynes proceeds via a 5-exo¬-dig¬ process. In the first part of this thesis, we will discuss how the ancilary ligand on Au(I) species can influence pathway selectivity for these cyclizations, therefore opening the door to selective 6-endo-dig cyclizations to generate fused carbocycles. With biological processes as well as other competing processes becoming ever more efficient, the future of chemical synthesis is threatened. If it is to survive, the focus of new chemical transformations will have to be on the cost and the greeness of the process. In the second part of this thesis, we will demonstrate how Ag(I) and Cu(I) complexes can offer even better 6-endo-dig¬ selectivity than analogous Au(I) complexes. Silver is about 56 times less expensive than gold, and copper is about 453 times less expensive than gold. Due to the greatly increased selectivity as well as the diminished cost of the catalysts, we have provided access to an attractive 6-endo-dig¬ cyclization process.
4

Development of New Biarylphosphane Coinage Metal Complexes for the Regioselective Synthesis of Fused Carbocycles

Levesque, Patrick Pierre 02 October 2012 (has links)
In the last century, no less than five nobel prizes have been awarded for the construction of carbon-carbon bonds : The Grignard reaction (1912), the Diels-Alder reaction (1950), the Wittig reaction (1979), Olefin metathesis (2005) and palladium cross-coupling reactions (2011). The latter two are transition metal catalyzed transformations and their impact on the synthesis of pharmaceutically active compounds, bulk chemicals, fine chemicals, high tech materials as well as agricultural chemicals has been phenomenal. These reactions have changed the way the scientific community views the science of synthesis. Unlike palladium, gold has long been considered to be an expensive and inert metal and therefore, research on Au catalysis was scarse until the begining of the new millenium. Once the scientific community realized the treasure trove of reactivity that gold had to offer, the number of chemical transformations as well as total syntheses involving Au(I)/Au(III) catalysis has sky rocketed. A methodology initially developped by Toste and coworkers has shown that intramolecular addition of a silyl enol ether on alkynes proceeds via a 5-exo¬-dig¬ process. In the first part of this thesis, we will discuss how the ancilary ligand on Au(I) species can influence pathway selectivity for these cyclizations, therefore opening the door to selective 6-endo-dig cyclizations to generate fused carbocycles. With biological processes as well as other competing processes becoming ever more efficient, the future of chemical synthesis is threatened. If it is to survive, the focus of new chemical transformations will have to be on the cost and the greeness of the process. In the second part of this thesis, we will demonstrate how Ag(I) and Cu(I) complexes can offer even better 6-endo-dig¬ selectivity than analogous Au(I) complexes. Silver is about 56 times less expensive than gold, and copper is about 453 times less expensive than gold. Due to the greatly increased selectivity as well as the diminished cost of the catalysts, we have provided access to an attractive 6-endo-dig¬ cyclization process.
5

Development of New Biarylphosphane Coinage Metal Complexes for the Regioselective Synthesis of Fused Carbocycles

Levesque, Patrick Pierre January 2012 (has links)
In the last century, no less than five nobel prizes have been awarded for the construction of carbon-carbon bonds : The Grignard reaction (1912), the Diels-Alder reaction (1950), the Wittig reaction (1979), Olefin metathesis (2005) and palladium cross-coupling reactions (2011). The latter two are transition metal catalyzed transformations and their impact on the synthesis of pharmaceutically active compounds, bulk chemicals, fine chemicals, high tech materials as well as agricultural chemicals has been phenomenal. These reactions have changed the way the scientific community views the science of synthesis. Unlike palladium, gold has long been considered to be an expensive and inert metal and therefore, research on Au catalysis was scarse until the begining of the new millenium. Once the scientific community realized the treasure trove of reactivity that gold had to offer, the number of chemical transformations as well as total syntheses involving Au(I)/Au(III) catalysis has sky rocketed. A methodology initially developped by Toste and coworkers has shown that intramolecular addition of a silyl enol ether on alkynes proceeds via a 5-exo¬-dig¬ process. In the first part of this thesis, we will discuss how the ancilary ligand on Au(I) species can influence pathway selectivity for these cyclizations, therefore opening the door to selective 6-endo-dig cyclizations to generate fused carbocycles. With biological processes as well as other competing processes becoming ever more efficient, the future of chemical synthesis is threatened. If it is to survive, the focus of new chemical transformations will have to be on the cost and the greeness of the process. In the second part of this thesis, we will demonstrate how Ag(I) and Cu(I) complexes can offer even better 6-endo-dig¬ selectivity than analogous Au(I) complexes. Silver is about 56 times less expensive than gold, and copper is about 453 times less expensive than gold. Due to the greatly increased selectivity as well as the diminished cost of the catalysts, we have provided access to an attractive 6-endo-dig¬ cyclization process.

Page generated in 0.039 seconds