Spelling suggestions: "subject:"old catalysis"" "subject:"cold catalysis""
1 |
Homogeneous gold catalysts : development of applications for gold(I) catalysts bearing N-heterocyclic carbene ligandsMüller, Ruben S. Ramon January 2011 (has links)
Recently established as an excellent activator for π-systems, efforts made in gold chemistry have increased enormously, resulting in a new ‘Gold Rush’ in chemistry. This thesis is a small contribution to it. There are two main aspects dominating the following chapters: gold catalysts bearing N-heterocyclic carbenes (NHCs) as supporting ligand, and H₂O assisted catalysis. The initial motivation for the presented work was to specifically demonstrate the potential of [(NHC)AuCl] as suitable catalysts for both known and new organic transformations and to establish these commercially available catalysts in gold chemistry, a field currently dominated by phosphine bearing gold complexes. Water mediated catalysis became the next repeatingly occurring aspect of this thesis by pursuing this initial aim and finding water as a useful solvent or agent, respectively. Various useful applications for gold-NHC complexes are presented, starting with the Meyer-Schuster rearrangement of propargylic alcohols as a continuation of the work realized with propargylic acetates by the Nolan group in early investigations on gold catalysts. Next, a study on alkyne hydration is presented with focus on low catalysts loadings to establish gold catalysts as a powerful choice for such a highly relevant reaction. The catalytic system is then advantageously adapted to a silver-free variation, still active at low catalyst loadings and with further mechanistic insight. Inspired by gold activation of alkynes, a gap of reactivity in gold catalysis is closed by a successful demonstration of nitrile hydration, a functionality previously thought to be inert towards gold activation. In this context, formation and role of dinuclear hydroxy-bridged gold complexes is investigated highlighting these complexes as a possible resting state of gold complexes in the presence of water. Next, the formation of furanones via alkoxylation/lactonization of propargylic propiolates is presented, an observation initially made when exploring the scope of the Meyer-Schuster rearrangement. The dissertation finally closes with the gold-catalyzed formation of amides, this time however achieved from aldoximes reacting via dehydration/hydration mechanism.
|
2 |
Formation of Carbon-Carbon and Carbon-Hetero Bonds through Gold CatalysisDong, Boliang 23 October 2017 (has links)
This dissertation mainly contains two parts: one is C-X (C, O, S) bond formation through gold(I) catalysis, one is new applications via gold(I/III) redox catalysis.
In first part, gold(I) catalysts would be introduced and their general applications, then the TA-Au species will be emphasized including the design, synthesis, characters and their application in catalysis. The applications are well developed during the past decade in our group, but here only involves three examples regarding C-C, C-O and C-S bond formations. From these effective applications, the unique stability and reactivity of TA-Au will be studied and explained, which is the reason and value of TA-Au discovery.
In second part, gold(I/III) redox catalysis will be presented through two application examples: cross-coupling of terminal alkynes, multiple bond di-functionalization. The most challenging part for coupling reactions is the competition between homo-coupling and cross-coupling products, while in our project, we have successfully developed a new method to selectively obtain cross-coupling as major product to homo-coupling product (ratio 12:1). Later on, we found a new method to achieve gold (I/III) redox cycle by using mild oxidant diazonium salt instead of PIDA or Selectfluor strong oxidant. The new mild and efficient method have largely extended the application of gold(I/III) redox catalysis into organic synthesis.
In sum, the new gold catalysts and catalysis methods reported here are important to the development of gold catalysis field, which are critical and useful to help people understand the reason of applying noble gold species as catalysts, and the advantages that other metals do not have.
|
3 |
Development of the Domino Pericyclic Oxy-Cope/Ene /Claisen /Diels-Alder Reaction and the Synthesis of Complex Bicyclo[3.3.1]alkenonesSow, Boubacar 18 December 2013 (has links)
This thesis is a dissertation to support the development of new domino pericyclic oxy-Cope/ene/Claisen/Diels-Alder reaction, diversity oriented synthesis of PPAPs scaffold via sequential one pot cascade reaction and ethyl aluminum sesquichloride catalyzed highly hindered Diels-Alder reaction.
The first part concentrates on the domino pericyclic oxy-Cope/ene/Claisen/Diels-Alder reaction. As a result of this study, we have developed a general methodology for rapidly constructing complex diterpenes and discovered a thermal oxy-Cope/ene/Claisen/Claisen rearrangement, applied to the synthesis of trans decalin benzofurans.
The second part involved the development of an efficient synthetic approach towards bicyclo[3.3.1]nonenone core found in many natural products, via a sequential Diels-Alder/gold(I)-catalyzed 6-endo-dig cyclization and its application to the synthesis of a diversified library of PPAPs.
Finally, we have developed an efficient synthetic methodology for the formation of cyclohexene rings bearing quaternary carbon centers via an ethyl aluminum sesquichloride mediated highly hindered Diels-Alder reaction. This method solved an important problem encountered in the synthesis of many natural products including PPAPs. This methodology opened new opportunities in the total synthesis of PPAPs.
|
4 |
Application of Gold(I) Catalysis in the Synthesis of Bridged Carbocycles, (±)-Magellanine and (±)-Salvinorin AMcGee, Philippe 26 November 2018 (has links)
Gold was considered for a long time to be an inert metal and was only in 1986 that the first homogeneous gold-catalyzed transformation was reported. In our laboratory, we isolated a surprisingly stable vinyl complex that resulted from an unexpected 1,2-silyl migration while working on a gold(I)-catalyzed reaction for the synthesis of polyprenylated polycyclic acylphloroglucinols (PPAPs). We herein report the isolation of a variety of organogold species where we could control the silyl migration based on the nature of the silyl group installed on the terminal alkyne. Silyl groups bearing an aromatic ring inhibited the silyl migration while the aliphatic silyl group afforded the 1,2-silyl migrated adduct. After mechanistic investigation of this intriguing migration, we believe that this process goes through a relatively rare gold vinylidene intermediate. More than 15 organogold complexes were isolated in good yield and characterized by x-ray crystallography. Investigation of their reactivity led to the formation of C(sp3)-C(sp2) bonds using electrophilic reagents without the use of Pd-based catalysts.
We have also developed a new gold(I)-catalyzed dehydro Diels-Alder reaction using a simple monocyclic silyl enol ether. This methodology proceeds effectively with a wide scope by the use of [JackiephosAu(NCMe)]SbF6 in toluene. This methodology was then applied to the synthesis of magellanine, an architecturally complexed angular natural product isolated in 1976 from the club moss Lycopodium Magellanicum. The key step precursor was rapidly constructed via a Mitsunobu/Diels-Alder reaction that generated the requisite carboxaldehyde. The dehydro Diels-Alder reaction afforded the molecular skeleton of magellanine diastereoselectively in 91% yield. The synthesis was successfully accomplished in 11 steps demonstrating the ability of the gold(I) salt to rapidly construct complex molecules.
Since the discovery of salvinorin A, a lot of efforts were exerted in order to optimize the biological activity for treatment of central nervous system disorders. Development of a new synthetic routes to salvinorins are essential to afford novel functionalized analogues. The decalin framework of salvinorin A was assembled with a Diels-Alder reaction with Et2AlCl followed by a gold(I)-catalyzed 6-endo-dig carbocyclization with [JohnphosAu(NCMe)]SbF6. Further functionalization afforded an elaborated intermediate which possesses the correct stereochemistry of the natural product. Following these promising results, efforts are currently in progress for the completion of the total synthesis.
|
5 |
Development of the Domino Pericyclic Oxy-Cope/Ene /Claisen /Diels-Alder Reaction and the Synthesis of Complex Bicyclo[3.3.1]alkenonesSow, Boubacar January 2014 (has links)
This thesis is a dissertation to support the development of new domino pericyclic oxy-Cope/ene/Claisen/Diels-Alder reaction, diversity oriented synthesis of PPAPs scaffold via sequential one pot cascade reaction and ethyl aluminum sesquichloride catalyzed highly hindered Diels-Alder reaction.
The first part concentrates on the domino pericyclic oxy-Cope/ene/Claisen/Diels-Alder reaction. As a result of this study, we have developed a general methodology for rapidly constructing complex diterpenes and discovered a thermal oxy-Cope/ene/Claisen/Claisen rearrangement, applied to the synthesis of trans decalin benzofurans.
The second part involved the development of an efficient synthetic approach towards bicyclo[3.3.1]nonenone core found in many natural products, via a sequential Diels-Alder/gold(I)-catalyzed 6-endo-dig cyclization and its application to the synthesis of a diversified library of PPAPs.
Finally, we have developed an efficient synthetic methodology for the formation of cyclohexene rings bearing quaternary carbon centers via an ethyl aluminum sesquichloride mediated highly hindered Diels-Alder reaction. This method solved an important problem encountered in the synthesis of many natural products including PPAPs. This methodology opened new opportunities in the total synthesis of PPAPs.
|
6 |
Stereoselective Synthesis of 2,3-Diamino-2,3-dideoxy-β-D-mannosides via Anomeric O-Alkylation and Gold Catalyzed Synthesis of Glycosides Using S-But-3-ynyl Thiocarbonate DonorsThapa, Prakash 27 September 2022 (has links)
No description available.
|
7 |
Gold-catalyzed cycloadditions an approach toward complex molecular frameworks via transannular, intermolecular, and intramolecular methods /Bailey, Lauren N. January 2010 (has links)
Title from first page of PDF document. Includes bibliographical references (p. 55-57).
|
8 |
Ortho-substituted arylsilanes in oxidative gold catalysisRobinson, Matthew Peter January 2018 (has links)
Organometallic compounds derived from tin, boron, and zinc, have been used extensively in transition metal-catalysed cross-coupling, and continue to hold status as the go-to reagents to form new carbon-carbon bonds. Recently, organosilicon compounds have emerged as an attractive alternative to these established reagents, benefitting from low toxicity, low cost, and general ease of handling. While the fundamental reactivity of arylsilane reagents (Ar-SiR3) is well known, their role in transition metal-catalysed reactions is generally less well studied. This thesis comprises an investigation into the effect of ortho-substitution of these arylsilane reagents, and specifically, their application in gold-catalysed direct arylation. In Chapter 2, the transmetalation of these reagents to gold(III) is assessed using a combination of in situ reaction monitoring coupled with kinetic simulations. This allowed a scale of reactivity to be constructed for a range of structurally diverse arylsilanes, and uncovered that more sterically hindered arylsilanes actually exhibit accelerated rates of transmetalation. In Chapter 3, the reactivity of ortho-substituted arylsilanes in gold-catalysed arylation is addressed. The majority of arylsilanes tested in the previous chapter were found to be unable to undergo coupling, despite the viability of transmetalation having been demonstrated. Slight modification of the ortho-substituent, to incorporate a tethered ligand, was found to have a dramatic effect on reactivity, and allowed the coupling of a variety of substrates. The nature of the ligand, as well as the substitution of the tether was found to have a significant impact on the rate of coupling. Chapter 4 describes the way in which the reactivity of ortho-substituted arylsilanes might be exploited in a 'Catch and Release' protocol for catalyst recovery. This aims to combine the established benefits of homogeneous and heterogeneous catalysis to offer an alternative to current methods of catalyst recycling in industrial chemistry. A number of different 'Catch and Release' mechanisms were considered, and the validity of the concept was demonstrated in a monophasic system.
|
9 |
Gold-catalyzed cyclizations for the synthesis of small and medium-sized arenesde León Solís, Claudia Alejandra 10 December 2012 (has links)
La coordinación selectiva del oro a los triples enlaces fue la chispa que desencadenó la fiebre del oro en la química organometálica. Una amplia gama de sustratos han sido empleados pero ha sido recientemente que los cicloheptatrienoshan sido sometidos a transformaciones químicas catalizadas por oro.
Se ha determinado que la reacción de alquinilcicloheptatrienos catalizada por Au(I) y Au (III) produce indenos 2- y 1-substituidos, respectivamente. En el mecanismo de esta reacción interviene un intermediario catiónico de tipo barbaralilo, sin precedentes en este tipo de química.
Asimismo se ha intentado desarrollar una metodología para la síntesis de acenos por medio de una ciclación catalizada por oro, así como la síntesis de buckybowls a partir de derivados alquinílicos de la truxentriona.
|
10 |
Intramolecular direct arylationCorrie, Thomas James Alexander January 2017 (has links)
The research conducted for this thesis has led to the development of an intramolecular gold-catalysed direct arylation protocol whereby tethered arenes and aryltrimethylsilanes are coupled (Scheme 1). In Chapter 1, the key synthetic and mechanistic studies that have ultimately led to the conception of this project are introduced. In Chapter 2, the substrate scope of intramolecular direct arylation is assessed. The reaction tolerates a wide range of substrates with tether lengths between one and five units (containing C, N and O) generating 5- to 9- membered rings. Substrates that lead to 5-membered rings (1 → 2) can tolerate a broad electronic range of substituents and proceed under the mildest reaction conditions (≤ 1 mol% catalyst, room temperature) and with excellent yields. A smaller collection of examples is demonstrated for the cyclisation to 6- and 7- membered rings (3 → 4, 5 → 6), but no heating is required and good yields are maintained throughout the series. The synthetically challenging synthesis of 8- and 9- membered rings (7 → 8, 9 → 10) is successful, albeit with slightly more forcing conditions (4 mol%, up to 50 °C). The methodology was subsequently applied in the successful 10-step synthesis of natural product allocolchicine 11. In Chapter 3, the operative reaction mechanism is elucidated. Reaction monitoring techniques allowed for the detailed study of linear free energy relationships (LFERs) and kinetic isotope effects (KIEs), which in turn allowed for deduction of the reaction turnover-limiting step (TLS) and thus the first quantitative experimental data on the effects of aryl electron demand and conformational freedom on the rate of reductive elimination from diarylgold(III) species. The mechanistic investigation led to the observation of complex kinetic profiles for specific substrates. The origin of these unusual effects is the focus of Chapter 4. By combining experiment with kinetic simulation, an off-cycle catalyst inhibition pathway was identified and the understanding of this process allowed for a re-optimisation of reaction conditions. In Chapter 5, the general kinetic parameters that could govern any domino reaction combining inter- and intramolecular direct arylation are deduced through kinetic analysis and simulation of hypothetical systems. The results of the kinetic analysis were proved experimentally through the successful combination of intra- and intermolecular gold-catalysed direct arylation. The products of intramolecular cyclisation 2, generated in-situ, are demonstrated to couple with intermolecular aryltrimethylsilanes 12, resulting in a rapid increase in molecular complexity from simple substrates in one pot.
|
Page generated in 0.0844 seconds