Spelling suggestions: "subject:"simpowersystems"" "subject:"simpowerssystems""
1 |
Analysis and Simulation of Mechanical Trains Driven by Variable Frequency Drive SystemsHan, Xu 2010 December 1900 (has links)
Induction motors and Variable Frequency Drives (VFDs) are widely used in industry to drive machinery trains. However, some mechanical trains driven by VFD-motor systems have encountered torsional vibration problems. This vibration can induce large stresses on shafts and couplings, and reduce the lifetime of these mechanical parts. Long before the designed lifetime, the mechanical train may encounter failure. This thesis focuses on VFDs with voltage source rectifiers for squirrel-cage induction motors of open-loop Volts/Hertz and closed-loop Field Oriented Control (FOC). First, the torsional vibration problems induced by VFDs are introduced. Then, the mathematical model for a squirrel-cage induction motor is given. Two common control methods used in VFD are discussed - open-loop Volts/Hertz and closed-loop FOC. SimPowerSystems and SimMechanics are used as the modeling software for electrical systems and mechanical systems respectively. Based on the models and software, two interface methods are provided for modeling the coupled system. A simple system is tested to verify the interface methods. The study of open-loop Volts/Hertz control method is performed. The closed-form of electromagnetic torque sideband frequency due to Pulse Width Modulation is given. A torsional resonance case is illustrated. The effects of non-ideal power switches are studied, which shows little in uence on the system response but which uses little energy consumption. A study of a non-ideal DC bus indicates that a DC bus voltage ripple can also induce a big torsional vibration. Next, the study of the closed-loop FOC control method is presented. Simulation for a complete VFD machinery train is performed. With the recti er and DC bus dynamic braking, the system shows a better performance than the ideal-DC bus case. Lastly, a parametric study of the FOC controller is performed. The effects of primary parameters are discussed. The results indicate that some control parameters (i.e. speed ramps, proportional gain in speed PI controller) are also responsible for the mechanical torsional vibration.
|
2 |
Multi-Agent Based Fault Localizationand Isolation in Active DistributionNetworksChaitanya, Deshpande January 2015 (has links)
Liberalized electricity markets, increased awareness of clean energy resources and theirdecreasing costs have resulted in large numbers of distributed power generators beinginstalled on distribution network. Installation of distributed generation has altered thepassive nature of distribution grid. A concept of Active Distribution Network is proposedwhich will enable present day infrastructure to host renewable energy resources reliably.Fault management that includes fault localization, isolation and service restoration ispart of active management of distribution networks.This thesis aims to introduce a distributed protection methodology for fault localizationand isolation. The objective is to enhance reliability of the network. Faults are identifiedbased on root mean square values of current measurements and by comparing thesevalues with preset thresholds. The method based on multi-agent concept can be usedto locate the faulty section of a distribution network and for selection of faulty phases.The nodal Bus Agent controls breakers that are associated with it. Based on indicationof fault, adjacent bus Agents communicate with each other to identify location of fault.A trip signal is then issued to corresponding Breakers in adjacent Bus Agents, isolatingthe faulty section of line. A case study was carried out to verify suitability of the proposedmethod. A meshed network model and multi-agent based protection scheme wassimulated in Simulink SimPowerSystems. Considering nature of Distribution Network,separate breakers for each phase are considered. The distribution network protectionsystem identified fault introduced in the network correctly along with interrupting thefault current.Keywords
|
3 |
Voltage Stability in an Electric Propulsion System for ShipsNord, Thomas January 2006 (has links)
This Master of Science thesis was written based on the shipbuilder Kockums AB feasibility study regarding the development of an All- Electric Ship for the Swedish Navy. The thesis was aiming at addressing voltage stability issues in a dc system fed by PWM rectifiers operating in parallel when supplying constant power loads. A basic computer model was developed for investigating the influence from various parameters on the system. It was shown that the voltage stability is dependent upon the ability to store energy in large capacitors. It was also shown that a voltage droop must be implemented maintaining load sharing within acceptable limits. Different cases of operation were modelled, faults were discussed, and the principal behaviour of the system during a short-circuit was investigated. It was shown that the short-circuit current is much more limited in this type of system in comparison to an ac system. It was concluded that more research and development regarding the components of the system must be performed.
|
Page generated in 0.0434 seconds