Spelling suggestions: "subject:"dimple soccer"" "subject:"5imple soccer""
1 |
Coevolution of Neuro-controllers to Train Multi-Agent Teams from Zero KnowledgeScheepers, Christiaan 25 July 2013 (has links)
After the historic chess match between Deep Blue and Garry Kasparov, many researchers considered the game of chess solved and moved on to the more complex game of soccer. Artificial intelligence research has shifted focus to creating artificial players capable of mimicking the task of playing soccer. A new training algorithm is presented in this thesis for training teams of players from zero knowledge, evaluated on a simplified version of the game of soccer. The new algorithm makes use of the charged particle swarm optimiser as a neural network trainer in a coevolutionary training environment. To counter the lack of domain information a new relative fitness measure based on the FIFA league-ranking system was developed. The function provides a granular relative performance measure for competitive training. Gameplay strategies that resulted from the trained players are evaluated. It was found that the algorithm successfully trains teams of agents to play in a cooperative manner. Techniques developed in this study may also be widely applied to various other artificial intelligence fields. / Dissertation (MSc)--University of Pretoria, 2013. / Computer Science / unrestricted
|
Page generated in 0.0442 seconds