Spelling suggestions: "subject:"imulação MCMC"" "subject:"mimulação MCMC""
1 |
Modelos estocásticos com heterocedasticidade para séries temporais em finanças / Stochastic models with heteroscedasticity for time series in financeOliveira, Sandra Cristina de 20 May 2005 (has links)
Neste trabalho desenvolvemos um estudo sobre modelos auto-regressivos com heterocedasticidade (ARCH) e modelos auto-regressivos com erros ARCH (AR-ARCH). Apresentamos os procedimentos para a estimação dos modelos e para a seleção da ordem dos mesmos. As estimativas dos parâmetros dos modelos são obtidas utilizando duas técnicas distintas: a inferência Clássica e a inferência Bayesiana. Na abordagem de Máxima Verossimilhança obtivemos intervalos de confiança usando a técnica Bootstrap e, na abordagem Bayesiana, adotamos uma distribuição a priori informativa e uma distribuição a priori não-informativa, considerando uma reparametrização dos modelos para mapear o espaço dos parâmetros no espaço real. Este procedimento nos permite adotar distribuição a priori normal para os parâmetros transformados. As distribuições a posteriori são obtidas através dos métodos de simulação de Monte Carlo em Cadeias de Markov (MCMC). A metodologia é exemplificada considerando séries simuladas e séries do mercado financeiro brasileiro / In this work we present a study of autoregressive conditional heteroskedasticity models (ARCH) and autoregressive models with autoregressive conditional heteroskedasticity errors (AR-ARCH). We also present procedures for the estimation and the selection of these models. The estimates of the parameters of those models are obtained using both Maximum Likelihood estimation and Bayesian estimation. In the Maximum Likelihood approach we get confidence intervals using Bootstrap resampling method and in the Bayesian approach we present informative prior and non-informative prior distributions, considering a reparametrization of those models in order to map the space of the parameters into real space. This procedure permits to choose prior normal distributions for the transformed parameters. The posterior distributions are obtained using Monte Carlo Markov Chain methods (MCMC). The methodology is exemplified considering simulated and Brazilian financial series
|
2 |
"Métodos de estimação na teoria de resposta ao item" / Estimation methods in item response theoryAzevedo, Caio Lucidius Naberezny 27 February 2003 (has links)
Neste trabalho apresentamos os mais importantes processos de estimação em algumas classes de modelos de resposta ao item (Dicotômicos e Policotômicos). Discutimos algumas propriedades desses métodos. Com o objetivo de comparar o desempenho dos métodos conduzimos simulações apropriadas. / In this work we show the most important estimation methods for some item response models (both dichotomous and polichotomous). We discuss some proprieties of these methods. To compare the characteristic of these methods we conducted appropriate simulations.
|
3 |
Abordagem bayesiana para curva de crescimento com restrições nos parâmetrosAMARAL, Magali Teresópolis Reis 18 August 2008 (has links)
Submitted by (ana.araujo@ufrpe.br) on 2016-08-04T13:26:23Z
No. of bitstreams: 1
Magali Teresopolis Reis Amaral.pdf: 5438608 bytes, checksum: a3ca949533ae94adaf7883fd465a627a (MD5) / Made available in DSpace on 2016-08-04T13:26:23Z (GMT). No. of bitstreams: 1
Magali Teresopolis Reis Amaral.pdf: 5438608 bytes, checksum: a3ca949533ae94adaf7883fd465a627a (MD5)
Previous issue date: 2008-08-18 / The adjustment of the weight-age growth curves for animals plays an important role in animal production planning. These adjusted growth curves must be coherent with the biological interpretation of animal growth, which often demands imposition of constraints on model parameters.The inference of the parameters of nonlinear models with constraints, using classical techniques, presents various difficulties. In order to bypass those difficulties, a bayesian approach for adjustment of the growing curves is proposed. In this respect the bayesian proposed approach introduces restrictions on model parameters through choice of the prior density. Due to the nonlinearity, the posterior density of those parameters does not have a kernel that can be identified among the traditional distributions, and their moments can only be obtained using numerical techniques. In this work the MCMC simulation (Monte Carlo chain Markov) was implemented to obtain a summary of the posterior density. Besides, selection model criteria were used for the observed data, based on generated samples of the posterior density.The main purpose of this work is to show that the bayesian approach can be of practical use, and to compare the bayesian inference of the estimated parameters considering noninformative prior density (from Jeffreys), with the classical inference obtained by the Gauss-Newton method. Therefore it was possible to observe that the calculation of the confidence intervals based on the asymptotic theory fails, indicating non significance of certain parameters of some models, while in the bayesian approach the intervals of credibility do not present this problem. The programs in this work were implemented in R language,and to illustrate the utility of the proposed method, analysis of real data was performed, from an experiment of evaluation of system of crossing among cows from different herds, implemented by Embrapa Pecuária Sudeste. The data correspond to 12 measurements of weight of animals between 8 and 19 months old, from the genetic groups of the races Nelore and Canchim, belonging to the genotype AALLAB (Paz 2002). The results reveal excellent applicability of the bayesian method, where the model of Richard presented difficulties of convergence both in the classical and in the bayesian approach (with non informative prior). On the other hand the logistic model provided the best adjustment of the data for both methodologies when opting for non informative and informative prior density. / O ajuste de curva de crescimento peso-idade para animais tem um papel importante no planejamento da produção animal. No entanto, as curvas de crescimento ajustadas devem ser coerentes com as interpretações biológicas do crescimento do animal, o que exige muitas vezes que sejam impostas restrições aos parâmetros desse modelo.A inferência de parâmetros de modelos não lineares sujeito a restrições, utilizando técnicas clássicas apresenta diversas dificuldades. Para contornar estas dificuldades, foi proposta uma abordagem bayesiana para ajuste de curvas de crescimento. Neste sentido,a abordagem bayesiana proposta introduz as restrições nos parâmetros dos modelos através das densidades de probabilidade a priori adotadas. Devido à não linearidade, as densidades a posteriori destes parâmetros não têm um núcleo que possa ser identificado entre as distribuições tradicionalmente conhecidas e os seus momentos só podem ser obtidos numericamente. Neste trabalho, as técnicas de simulação de Monte Carlo Cadeia de Markov (MCMC) foram implementadas para obtenção de um sumário das densidades a posteriori. Além disso, foram utilizados critérios de seleção do melhor modelo para um determinado conjunto de dados baseados nas amostras geradas das densidades a posteriori.O objetivo principal deste trabalho é mostrar a viabilidade da abordagem bayesiana e comparar a inferência bayesiana dos parâmetros estimados, considerando-se densidades a priori não informativas (de Jeffreys), com a inferência clássica das estimativas obtidas pelo método de Gauss-Newton. Assim, observou-se que o cálculo de intervalos de confiança, baseado na teoria assintótica, falha, levando a não significância de certos parâmetros de alguns modelos. Enquanto na abordagem bayesiana os intervalos de credibilidade não apresentam este problema. Os programas utilizados foram implementados no R e para ilustração da aplicabilidade do método proposto, foram realizadas análises de dados reais oriundos de um experimento de avaliação de sistema de cruzamento entre raças bovinas de corte, executado na Embrapa Pecuária Sudeste. Os dados correspondem a 12 mensurações de peso dos 8 aos 19 meses de idade do grupo genético das raças Nelore e Canchim, pertencente ao grupo de genotípico AALLAB, ver (Paz 2002). Os resultados revelaram excelente aplicabilidade do método bayesiano, destacando que o modelo de Richard apresentou dificuldades de convergência tanto na abordagem clássica como bayesiana (com priori não informativa). Por outro lado o modelo Logístico foi quem melhor se ajustou aos dados em ambas metodologias quando se optou por densidades a priori não informativa e informativa.
|
4 |
Modelos estocásticos com heterocedasticidade para séries temporais em finanças / Stochastic models with heteroscedasticity for time series in financeSandra Cristina de Oliveira 20 May 2005 (has links)
Neste trabalho desenvolvemos um estudo sobre modelos auto-regressivos com heterocedasticidade (ARCH) e modelos auto-regressivos com erros ARCH (AR-ARCH). Apresentamos os procedimentos para a estimação dos modelos e para a seleção da ordem dos mesmos. As estimativas dos parâmetros dos modelos são obtidas utilizando duas técnicas distintas: a inferência Clássica e a inferência Bayesiana. Na abordagem de Máxima Verossimilhança obtivemos intervalos de confiança usando a técnica Bootstrap e, na abordagem Bayesiana, adotamos uma distribuição a priori informativa e uma distribuição a priori não-informativa, considerando uma reparametrização dos modelos para mapear o espaço dos parâmetros no espaço real. Este procedimento nos permite adotar distribuição a priori normal para os parâmetros transformados. As distribuições a posteriori são obtidas através dos métodos de simulação de Monte Carlo em Cadeias de Markov (MCMC). A metodologia é exemplificada considerando séries simuladas e séries do mercado financeiro brasileiro / In this work we present a study of autoregressive conditional heteroskedasticity models (ARCH) and autoregressive models with autoregressive conditional heteroskedasticity errors (AR-ARCH). We also present procedures for the estimation and the selection of these models. The estimates of the parameters of those models are obtained using both Maximum Likelihood estimation and Bayesian estimation. In the Maximum Likelihood approach we get confidence intervals using Bootstrap resampling method and in the Bayesian approach we present informative prior and non-informative prior distributions, considering a reparametrization of those models in order to map the space of the parameters into real space. This procedure permits to choose prior normal distributions for the transformed parameters. The posterior distributions are obtained using Monte Carlo Markov Chain methods (MCMC). The methodology is exemplified considering simulated and Brazilian financial series
|
5 |
"Métodos de estimação na teoria de resposta ao item" / Estimation methods in item response theoryCaio Lucidius Naberezny Azevedo 27 February 2003 (has links)
Neste trabalho apresentamos os mais importantes processos de estimação em algumas classes de modelos de resposta ao item (Dicotômicos e Policotômicos). Discutimos algumas propriedades desses métodos. Com o objetivo de comparar o desempenho dos métodos conduzimos simulações apropriadas. / In this work we show the most important estimation methods for some item response models (both dichotomous and polichotomous). We discuss some proprieties of these methods. To compare the characteristic of these methods we conducted appropriate simulations.
|
Page generated in 0.0427 seconds