• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using geographic models in the simulation of mobile communication

Stepanov, Illya. January 2008 (has links)
Stuttgart, Univ., Diss., 2008.
2

Modellgestützte Untersuchungen zum Überleben einer Steinkauzpopulation (Athene noctua) in Thüringen / Modelling study of a Little Owl (Athene noctua) population in Thuringia, Germany

Esther, Alexandra January 2002 (has links)
Der Rückgang des Steinkauzes (Athene noctua) hat in Thüringen und Sachsen seit den 60er Jahren dramatische Ausmaße angenommen. In den 50er Jahren noch flächendeckend beobachtet, wurden für das Jahr 2000 nur noch 18 Individuen durch Bestandserfassungen registriert. Die vielfach diskutierten Rückgangsursachen beziehen sich vor Allem auf die großflächige Änderung der Landschaftsstrukturen, die zum Verlust der Lebensgrundlagen des Steinkauzes führten. So haben u.a. der Verlust an Brut- und Vorratshöhlen und an ganzjährig kurzgehaltenen Grünlandflächen, sowie der zunehmende Einfluss von Prädatoren erheblich zum Rückgang beigetragen. Eingeleitete Schutzmaßnahmen, ehrenamtlich oder auf dem allgemeinen Naturschutzprogramm des Freistaates Thüringen beruhend, wie das Anbringen von Nisthilfen mit Marderschutz oder Pflegeverträge für Streuobstwiesen, zeigen bisher keine sichtbare Wirkung. Als weitergehende Maßnahmen stehen die Reduzierung von Füchsen (Vulpes vulpes) und Steinmardern (Martes foina), Ausbreitungskorridore für Steinkäuze und ein Auswilderungsprogramm zur Diskussion. Angesichts des Populationsrückgangs des Steinkauz war es Aufgabe dieser Arbeit durch ein Simulationsmodell Untersuchungen zum Überleben einer Steinkauzpopulation (Athene noctua) in Thüringen durchzuführen. Die zusammengetragenen Bestandszahlen ergaben geringe Individuenzahlen in den thüringischen Landkreisen Altenburger Land, Greiz und der Stadt Gera sowie in den sächsischen Landkreisen Chemnitzer Land und Mittweida. Die Bestandszahlen der Jahre 1989-2001, sowie weitere der Literatur entnommene Daten zum populationsökologischen Hintergrund, wie auch Analysen des Gebietes in Thüringen und Sachsen und dessen besetzter Reviere der Jahre 1989- 2001, wurden in ein stochastisches, räumlich-explizites, auf Individuen basierendes Simulationsmodell eingebracht. Es wurde eine Sensitivitätsanalyse durchgeführt, die beruhend auf den erfassten Populationsentwicklungen in Thüringen und Sachsen und auf Literaturangaben, ausgewählte Parameterkonstellationen für die Untersuchungenergab. Die Untersuchungen zum Überleben vor dem Hintergrund möglicher Gefährdungsfaktoren und zur Ermittelung des Nutzens von Managementoptionen, wurden mit Schwerpunkten auf „Prädation“, „Habitatverbesserung“ und „Auswilderung“ durchgeführt. Als Ergebnis der Simulationen kam heraus, dass die Prädation keinen großen Einfluss auf das Überleben der Population hat, und Schutzmaßnahmen die Chancen für das Überleben der Population nicht erhöhen würden. Habitatverbesserungen, die die Juvenilen animieren sich im Umkreis von bis zu 5 km vom elterlichen Revier anzusiedeln, würden aber deutlich zum Überleben der Population, auch in längerfristiger Perspektive, beitragen. Habitatverbesserungen, die zu weiter entfernteren Ansiedlungen animieren, könnten sich dagegen ungünstig auf das Überleben der Population auswirken. Für eine mögliche Auswilderung als Schutzmaßnahme ergab sich im Modell, dass eine Auswilderung von 5 Individuen pro Jahr über einen Zeitraum von 5 Jahren, die Überlebenswahrscheinlichkeit kurzfristig deutlich verbessern würde. Es ergab sich allerdings kein Unterschied, ob 5, 10 oder 15 Individuen ausgewildert werden. Eine länger durchgeführte Auswilderung würde vermutlich die Überlebenswahrscheinlichkeit entsprechend langfristiger verbessern.
3

Strukturbildung in Peer-to-Peer-Netzwerken /

Fischbach, Kai. January 2008 (has links) (PDF)
Wiss. Hochsch.für Unternehmensführung (WHU), Diss.--Vallendar, 2006.
4

Wirkpaarungssimulation am Beispiel des innermaschinellen Transports von Stückgütern

Troll, Clemens 13 October 2016 (has links)
Gegenstand dieser Arbeit ist die Simulation einer Wirkpaarung am Beispiel des innermaschinellen Transports von Stückgütern. Zur Schonung des Verarbeitungsgutes wird für das intermittierende Fördern ein neuartiger Bewegungsansatz betrachtet. Da sich der mit diesem Ansatz durchgeführte Prozess sehr sensitiv gegenüber den Eingangsparametern verhält, ist es notwendig, diesen zu simulieren, um somit eine stabile und robuste Bewegung zu synthetisieren. Als grundlegender Modellansatz wird die Diskrete Elemente Methode (DEM) gewählt, da diese es ermöglicht, den Kontakt von Starrkörpern realistisch abzubilden. Zur Umsetzung der Simulation wird die Modellbildung mit zwei unterschiedlichen Modellierungsumgebungen realisiert, die sich hinsichtlich der Umsetzung der DEM unterscheiden: Zum Einen mit Hilfe der kommerziellen Software MATLAB/Simulink und zum Anderen mit Hilfe der Open-Source-Software Woo DEM. Im Anschluss werden die damit erzeugten Modelle verifiziert und experimentell validiert, wodurch sich sowohl die Modellgüte als auch die Modelleignung ableitet. Dabei wird besonders auf die prozessentscheidende Rolle der Reibung eingegangen. Abschließend wird mit Hilfe des Vorzugsmodells an Hand zweier Beispiele die Modellanalyse vollzogen. Hierbei wird der neuartige Bewegungsansatz synthetisiert und simulativ hinsichtlich des Prozesserfolges überprüft. Dabei wird insbesondere auf die mit Hilfe des Modells quanitifizierbaren Prozessgrößen eingegangen. / The subject of this thesis deals with the simulation of an active unit demonstrated by the mechanical transport of pieced goods. To protect the processing goods, a novel motion approach for the intermittent transport is researched. Since the process performed with this approach is very sensitive to its input parameters, it is necessary to simulate it, with the aim to synthesize a stable and robust motion. The Discrete Element Method (DEM) is chosen as the basic model approach, because it allows the realistic representation of rigid body contacts. To implement the simulation the modelling is realised with two different modelling environments, which differ in the implementation of the DEM: Firstly, using the commercial software MATLAB/Simulink and secondly with the help of the open-source-software Woo DEM. Following that the generated models are verified and experimentally validated, whereby both the model goodness and the model suitability are derived. Special attention is dedicated to the role of the process relevant friction. Eventually, the model analysis is carried out with the help of two examples using the preferred model. Here, the novel motion approach is synthesized and verified by simulation in terms of process success. In particular it will address process variables, which are quantifiable because of the model.
5

Eine computermodellgestützte Analyse der elektrophysiologischen Effekte von Gap-Junction-Lateralisierung und zellulärer Hypertrophie in kardialem Gewebe

Seidel, Thomas 01 November 2011 (has links)
Die vorliegende Dissertation befasst sich mit Entstehungsmechanismen kardialer Arrhythmien auf der Grundlage pathologisch veränderten Myokards. Es wurde eine systematische Analyse der elektrophysiologischen Veränderungen, die als Folge von Gap-Junction- Lateralisierung und zellulärer Hypertrophie auftreten, durchgeführt. Die Analyse beruht auf einem mathematischen Computermodell, das zur Simulation der Aktionspotentialausbreitung innerhalb einer Einzelzellschicht humaner ventrikulärer Kardiomyozyten entwickelt wurde. Ausgehend von bestehenden Einzelzellmodellen wurde ein räumlich und zeitlich hoch aufgelöstes Multizellmodell generiert und in der Programmiersprache Object Pascal implementiert. Nach Validierung des Modells wurde es zur gezielten, an experimentellen Daten orientierten Manipulation geometrischer Eigenschaften der Zellen (Länge, Durchmesser) und des Zellverbandes (Anordnung der Zellen untereinander) sowie der Gap-Junction-Verteilung genutzt. Die Analyse der elektrophysiologischen Effekte im Vergleich zur Kontrolle fand sowohl unter Normalbedingungen als auch unter Bedingungen, die pathologischen Veränderungen entsprechen (Entkopplung der Gap-Junctions, verringerte Aktivität des schnellen Natriumkanals, erhöhte Inhomogenität), statt. Es zeigte sich, dass ein größerer Zelldurchmesser bzw. erhöhte laterale Gap-Junction-Leitfähigkeit (Simulation von kardialer Hypertrophie bzw. Connexin- Lateralisierung) die Entstehungswahrscheinlichkeit eines unidirektionalen Leitungsblocks erhöhte. Die Erregungsausbreitungsgeschwindigkeit in hypertrophierten Zellen war zudem weniger stabil als in normalen Zellen. Beide Effekte gehören zu den Hauptursachen der Entstehung und Aufrechterhaltung ventrikulärer Arrhythmien. Die Ergebnisse der Arbeit erklären somit Ursachen des erhöhten Arrhythmierisikos in pathologisch veränderten und hypertrophierten Herzen und liefern eine theoretische Grundlage für zukünftige Studien.
6

Ein Beitrag zur strukturmodellbasierten Korrektur thermisch bedingter Fehler an Werkzeugmaschinen

Thiem, Xaver Peter 06 May 2024 (has links)
Die strukturmodellbasierte Korrektur wird genutzt, um thermisch bedingte Fehler von Werkzeugmaschinen mithilfe von physikalischen Modellen zu reduzieren. Diese Modelle bilden das thermo-elastische Verhalten der Werkzeugmaschine ab, einschließlich ihrer Strukturvariabilität. Als Modelleingangsdaten werden maschineninterne technologische Daten, wie die Achspositionen, -geschwindigkeiten, Motorströme sowie die Umgebungstemperatur verwendet. In der Maschinensteuerung erfolgt eine volumetrische Korrektur der berechneten thermisch bedingten Fehler. In dieser Arbeit werden zunächst die Grundfunktionen der strukturmodellbasierten Korrektur von der thermo-elastischen Wirkungskette abgeleitet. Es werden die drei wesentlichen Echtzeitbereiche für die Module der Korrektur sowie die Schnittstellen zwischen diesen Echtzeitbereichen definiert. Die modularisierte Korrektur wird am Beispiel eines Hexapods demonstriert. Die für die technologischen Daten erforderlichen Abtastzeiten werden aus den Bewegungsgrenzwerten der Achsen, der Diskretisierung der Randbedingungen im thermischen Modell und dem thermischen Zeitverhalten der Maschine hergeleitet. Des Weiteren wird die geeignete Verdichtung der Eingangsgrößen auf die Lastschrittweite des Simulationsmodells unter Verwendung von positionsabhängigen Lastprofilen beschrieben. Das Vorgehen wird an einem Knotenpunktmodell einer kugelgewindegetriebenen Achse demonstriert. Die Verdichtung der Eingangsgrößen führt in diesem Beispiel zu einer starken Reduktion der benötigten Rechenzeit bei einem lediglich geringen Genauigkeitsverlust. Das Starttemperaturfeld für das Korrekturmodell hat einen wesentlichen Einfluss auf die Korrekturgenauigkeit. Deswegen wird ein Vorgehen für die Bestimmung des Starttemperaturfelds unter verschiedenen Randbedingungen und unter Berücksichtigung des thermischen Zeitverhaltens der Maschine entwickelt. Das Vorgehen wird am Beispiel einer kartesischen 3-Achs-Maschine demonstriert. Für kurze Unterbrechungen und Fortsetzung der Simulation mit dem letzten bekannten Temperaturfeld liegt der Restfehler im Bereich der Referenzsimulation ohne Unterbrechung. Eine geraffte Simulation zur Bestimmung des Starttemperaturfelds führt ebenfalls zu einem Restfehler in derselben Größenordnung wie die Referenzsimulation ohne Unterbrechung. Durch das Strukturmodell wird ein räumliches Fehlergitter mit thermisch bedingten Fehlern im Arbeitsraum der Maschine berechnet. Dieses Fehlergitter ist die Eingangsgröße für drei untersuchte Implementationsvarianten der volumetrischen Korrektur. Die Auswirkungen der Varianten und der Anzahl der Gitterpunkte auf die Korrekturgenauigkeit wird mit einer Monte-Carlo-Simulation untersucht. Das Vorgehen wird ebenfalls am Beispiel der 3-Achs-Maschine demonstriert. Es zeigt sich, dass die Wahl der Implementationsvariante für die volumetrische Korrektur nur einen geringen Einfluss auf die Korrekturgenauigkeit hat. Mit zunehmender Gitterpunktanzahl fällt der Restfehler asymptotisch ab.:1. Einleitung 2. Stand der Technik 2.1 Maßnahmen zur Reduktion thermisch bedingter Fehler 2.2 Modellbasierte Korrekturansätze 2.2.1 Korrelative Korrektur 2.2.2 Eigenschaftsmodellbasierte Korrektur 2.2.3 Strukturmodellbasierte Korrektur 2.3 Strukturmodelle für die Korrektur 2.3.1 Knotenpunktmodelle 2.3.2 Entfeinerte FE-Modelle 2.3.3 FE-Modelle mit reduzierter Modellordnung 2.4 Volumetrische Korrektur anWerkzeugmaschinen 2.4.1 Fehlerparameter der Maschinenachsen 2.4.2 Kinematisches Fehlermodell auf Basis von homogenen Transformationsmatrizen 2.5 Einflüsse auf die Korrekturqualität der strukturmodellbasierten Korrektur 2.6 Hemmnisse für den Einsatz der strukturmodellbasierten Korrektur 2.6.1 Modellierungsaufwand 2.6.2 Echtzeitfähigkeit 2.6.3 Versuchsaufwand 2.6.4 Steuerungsintegration 2.6.5 Startzustand des thermischen Modells 3. Zielsetzung und Vorgehensweise 4. Demonstratormaschinen 4.1 Parallelkinematik Hexapod 4.2 Versuchsträger MAX 5. Module der strukturmodellbasierten Korrektur 5.1 Grundfunktionen der strukturmodellbasierten Korrektur 5.2 Echtzeitbereiche 5.3 Anforderungen an steuerungsnahe Module 5.4 Implementation der Korrektur am Beispiel eines Hexapods 5.4.1 Gewählte Implementationsvariante 5.4.2 Lastdatenerfassung 5.4.3 Strukturmodell 5.4.4 Parameterabgleich 5.4.5 Fehler im Arbeitsraum 5.4.6 Korrektur auf Achsebene 5.4.7 Versuchsaufbau und -durchführung 5.4.8 Ergebnisse der Validierung 5.5 Zusammenfassung 6. Eingangsdatenverarbeitung 6.1 Abtasttakt der Lastdaten 6.1.1 Abtasttakt des Stroms 6.1.2 Abtasttakt der Geschwindigkeit 6.1.3 Abtasttakt der Position 6.2 Lastdatenverdichtung 6.2.1 Positionsabhängiges Lastprofil 6.2.2 Einfluss der Lastdatenverdichtung auf die Genauigkeit 6.3 Eingangsdatenverarbeitung am Beispiel eines Kugelgewindetriebs 6.4 Zusammenfassung 7. Startzustand der strukturmodellbasierten Korrektur 7.1 Charakterisierung des thermischen Zeitverhaltens 7.2 Fortsetzen der Simulation mit letztem Temperaturfeld 7.3 Zeitlich geraffte Simulation 7.3.1 Abschätzung der Lasten im Stillstand 7.3.2 Abschätzung der fortgesetzten Belastung in der Serienfertigung 7.3.3 Abschätzung Umgebungstemperatur anhand von typischem Tagesverlauf 7.4 Abklingen des Fehlers nach Unterbrechung 7.5 Bewertung des ermittelten Starttemperaturfeldes 7.6 Abschätzung des Temperaturfelds anhand von Messwerten 7.6.1 Variante 1: Mittlere Temperatur der Komponenten 7.6.2 Variante 2: Ähnliches bekanntes Temperaturfeld 7.6.3 Variante 3: Temperaturfeld interpoliert zwischen Messpunkten 7.6.4 Bewertung der Temperaturfeldschätzung 7.7 Genauigkeit der Temperaturfeldschätzung für ein einfaches Beispielmodell 7.7.1 Modell und Zeitverhalten 7.7.2 Lastregime und Referenzsimulation 7.7.3 Fortsetzen der Simulation mit letztem Temperaturfeld 7.7.4 Geraffte Simulation 7.7.5 Abklingen des Fehlers nach Unterbrechung 7.7.6 Abschätzung des Temperaturfelds anhand von Messwerten 7.8 Wiederanlauf am Beispiel des Versuchsträgers MAX 7.8.1 Reduziertes thermisches FE-Modell 7.8.2 Zeitverhalten 7.8.3 Wiederanlauf nach einer kurzen Unterbrechung 7.8.4 Geraffte Simulation mit bekannten Lastdaten 7.8.5 Geraffte Simulation mit geschätzten Lastdaten 7.8.6 Abklingen des Fehlers nach Unterbrechung 7.8.7 Abschätzung des Starttemperaturfeldes anhand von Messwerten 7.9 Zusammenfassung 8. Volumetrische thermo-elastische Korrektur 8.1 Varianten für kombinierte geometrische und thermo-elastische Korrektur 8.1.1 Variante 1: Aufschaltung auf Fehlerparameter 8.1.2 Variante 2: Aufschaltung auf aktuellen Fehler am TCP 8.1.3 Variante 3: Aufschaltung auf Achssollwerte 8.2 Typische Fehlerparameter von Werkzeugmaschinen 8.3 Bewertung anhand des Fehlers am TCP 8.4 Untersuchung der Varianten am Beispiel des Versuchsträgers MAX 8.5 Zusammenfassung 9. Zusammenfassung und Ausblick 9.1 Zusammenfassung 9.2 Ausblick A Anhang A.1 Positionen der im Versuchsträger verbauten Sensoren A.2 Beispiel für kinematisches Modell einer Maschine A.3 Beispiel für typische generierte Fehler am TCP A.4 Ermitteln der Achskorrekturwerte mittels Rücktransformation A.5 Visualisierung Lastprofile A.6 Veröffentlichungen A.7 Vorträge Literaturverzeichnis / Structure model based correction is used to reduce thermally induced errors in machine tools utilizing physical models. These models simulate the thermo-elastic behavior of the machine tool, including its structural variability. Machine-internal technological data, such as axis positions, velocities, motor currents, and ambient temperature, are used as model input data. In the machine control, a volumetric correction of the calculated thermally induced errors is performed. In this thesis, the basic functions of the structure model based correction are derived from the thermo-elastic functional chain. Three main real-time domains for the modules of the correction as well as the interfaces between these real-time domains are defined. The modularized correction is demonstrated using a hexapod as an example. The sampling times required for the load data are derived from the motion limits of the axes, the discretization of the boundary conditions in the thermal model, and the thermal time behavior of the machine. Furthermore, the appropriate compression of the input variables to the load step size of the simulation model using position-dependent load profiles is described. The procedure is demonstrated on a model with lumped parameters for a ball screw driven axis. In this example, the compression of the input variables leads to a strong reduction of the required computation time with only a small loss of accuracy. The start temperature field for the correction model has a significant influence on the correction accuracy. Therefore, a procedure for the determination of the start temperature field under different boundary conditions and under consideration of the thermal time behavior of the machine is developed. The procedure is demonstrated using the example of a Cartesian 3-axis machine. For short interruptions and continuation of the simulation with the last known temperature field, the residual error is in the range of the reference simulation without interruption. A streamlined simulation to determine the starting temperature field also leads to a residual error of the same order of magnitude as the reference simulation without interruption. The structural model is used to calculate a spatial error grid with thermally induced errors in the working space of the machine. This error grid is the input variable for three investigated implementation variants of the volumetric correction. The effects of the variants and the number of grid points on the correction accuracy are investigated with a Monte Carlo simulation. The procedure is also demonstrated using the 3-axis machine as an example. It is shown that the choice of the implementation variant for the volumetric correction has only a minor influence on the correction accuracy. With an increasing number of grid points, the residual error decreases asymptotically.:1. Einleitung 2. Stand der Technik 2.1 Maßnahmen zur Reduktion thermisch bedingter Fehler 2.2 Modellbasierte Korrekturansätze 2.2.1 Korrelative Korrektur 2.2.2 Eigenschaftsmodellbasierte Korrektur 2.2.3 Strukturmodellbasierte Korrektur 2.3 Strukturmodelle für die Korrektur 2.3.1 Knotenpunktmodelle 2.3.2 Entfeinerte FE-Modelle 2.3.3 FE-Modelle mit reduzierter Modellordnung 2.4 Volumetrische Korrektur anWerkzeugmaschinen 2.4.1 Fehlerparameter der Maschinenachsen 2.4.2 Kinematisches Fehlermodell auf Basis von homogenen Transformationsmatrizen 2.5 Einflüsse auf die Korrekturqualität der strukturmodellbasierten Korrektur 2.6 Hemmnisse für den Einsatz der strukturmodellbasierten Korrektur 2.6.1 Modellierungsaufwand 2.6.2 Echtzeitfähigkeit 2.6.3 Versuchsaufwand 2.6.4 Steuerungsintegration 2.6.5 Startzustand des thermischen Modells 3. Zielsetzung und Vorgehensweise 4. Demonstratormaschinen 4.1 Parallelkinematik Hexapod 4.2 Versuchsträger MAX 5. Module der strukturmodellbasierten Korrektur 5.1 Grundfunktionen der strukturmodellbasierten Korrektur 5.2 Echtzeitbereiche 5.3 Anforderungen an steuerungsnahe Module 5.4 Implementation der Korrektur am Beispiel eines Hexapods 5.4.1 Gewählte Implementationsvariante 5.4.2 Lastdatenerfassung 5.4.3 Strukturmodell 5.4.4 Parameterabgleich 5.4.5 Fehler im Arbeitsraum 5.4.6 Korrektur auf Achsebene 5.4.7 Versuchsaufbau und -durchführung 5.4.8 Ergebnisse der Validierung 5.5 Zusammenfassung 6. Eingangsdatenverarbeitung 6.1 Abtasttakt der Lastdaten 6.1.1 Abtasttakt des Stroms 6.1.2 Abtasttakt der Geschwindigkeit 6.1.3 Abtasttakt der Position 6.2 Lastdatenverdichtung 6.2.1 Positionsabhängiges Lastprofil 6.2.2 Einfluss der Lastdatenverdichtung auf die Genauigkeit 6.3 Eingangsdatenverarbeitung am Beispiel eines Kugelgewindetriebs 6.4 Zusammenfassung 7. Startzustand der strukturmodellbasierten Korrektur 7.1 Charakterisierung des thermischen Zeitverhaltens 7.2 Fortsetzen der Simulation mit letztem Temperaturfeld 7.3 Zeitlich geraffte Simulation 7.3.1 Abschätzung der Lasten im Stillstand 7.3.2 Abschätzung der fortgesetzten Belastung in der Serienfertigung 7.3.3 Abschätzung Umgebungstemperatur anhand von typischem Tagesverlauf 7.4 Abklingen des Fehlers nach Unterbrechung 7.5 Bewertung des ermittelten Starttemperaturfeldes 7.6 Abschätzung des Temperaturfelds anhand von Messwerten 7.6.1 Variante 1: Mittlere Temperatur der Komponenten 7.6.2 Variante 2: Ähnliches bekanntes Temperaturfeld 7.6.3 Variante 3: Temperaturfeld interpoliert zwischen Messpunkten 7.6.4 Bewertung der Temperaturfeldschätzung 7.7 Genauigkeit der Temperaturfeldschätzung für ein einfaches Beispielmodell 7.7.1 Modell und Zeitverhalten 7.7.2 Lastregime und Referenzsimulation 7.7.3 Fortsetzen der Simulation mit letztem Temperaturfeld 7.7.4 Geraffte Simulation 7.7.5 Abklingen des Fehlers nach Unterbrechung 7.7.6 Abschätzung des Temperaturfelds anhand von Messwerten 7.8 Wiederanlauf am Beispiel des Versuchsträgers MAX 7.8.1 Reduziertes thermisches FE-Modell 7.8.2 Zeitverhalten 7.8.3 Wiederanlauf nach einer kurzen Unterbrechung 7.8.4 Geraffte Simulation mit bekannten Lastdaten 7.8.5 Geraffte Simulation mit geschätzten Lastdaten 7.8.6 Abklingen des Fehlers nach Unterbrechung 7.8.7 Abschätzung des Starttemperaturfeldes anhand von Messwerten 7.9 Zusammenfassung 8. Volumetrische thermo-elastische Korrektur 8.1 Varianten für kombinierte geometrische und thermo-elastische Korrektur 8.1.1 Variante 1: Aufschaltung auf Fehlerparameter 8.1.2 Variante 2: Aufschaltung auf aktuellen Fehler am TCP 8.1.3 Variante 3: Aufschaltung auf Achssollwerte 8.2 Typische Fehlerparameter von Werkzeugmaschinen 8.3 Bewertung anhand des Fehlers am TCP 8.4 Untersuchung der Varianten am Beispiel des Versuchsträgers MAX 8.5 Zusammenfassung 9. Zusammenfassung und Ausblick 9.1 Zusammenfassung 9.2 Ausblick A Anhang A.1 Positionen der im Versuchsträger verbauten Sensoren A.2 Beispiel für kinematisches Modell einer Maschine A.3 Beispiel für typische generierte Fehler am TCP A.4 Ermitteln der Achskorrekturwerte mittels Rücktransformation A.5 Visualisierung Lastprofile A.6 Veröffentlichungen A.7 Vorträge Literaturverzeichnis

Page generated in 0.0878 seconds